Skip to main content
Log in

Kognitive Reservekapazität und ihre Bedeutung für Auftreten und Verlauf der Demenz

Cognitive reserve and its relevance for the prevention and diagnosis of dementia

  • (unbekannt)
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die fortschreitende Hirnschädigung bei neurodegenerativen Erkrankungen wie der Alzheimer-Krankheit ist ohne Zweifel die Hauptursache der klinischen Demenzsymptome. Der Zusammenhang zwischen Hirnschädigung und Symptomatik ist jedoch nicht linear. Bestimmte interindividuelle Unterschiede wie eine gute Schulbildung oder ein großes Hirnvolumen bedingen eine höhere Widerstandsfähigkeit gegen die Hirnpathologie. Dieses Phänomen wird als kognitive Reservekapazität (KR) bezeichnet. Menschen mit hoher KR haben ein geringeres Demenzrisiko, wobei sowohl passive als auch aktive Reservekonzepte diskutiert werden. Bei der passiven KR geht man von hirnstrukturellen Besonderheiten wie einer höheren Neuronen- oder Synapsenzahl aus, die einen größeren Puffer gegen Verluste darstellen. Erst wenn eine bestimmte Verlustgrenze durch eine fortschreitende Hirnschädigung überschritten wird, treten Symptome auf. Neben dem passiven Konzept werden auch aktive Mechanismen diskutiert, die unabhängig von rein strukturellen Unterschieden zur längeren Aufrechterhaltung der kognitiven Leistungsfähigkeit beitragen. Bei kognitiv gesunden Menschen führen diese Mechanismen zur Adaption der Hirnaktivität bei Steigerung des Schwierigkeitsgrades einer Aufgabe; bei fortschreitender Neurodegeneration kompensieren diese Mechanismen die Schädigung. Menschen mit hoher KR zeigen dabei eine effizientere Aktivierung bei derselben Aufgabe und können dadurch das normale kognitive Leistungsniveau länger aufrecht erhalten.

Summary

Progressive brain damage is undoubtedly the main cause of clinical symptoms of dementia in neurodegenerative disorders such as Alzheimer’s disease. However, the association between brain damage and cognitive symptoms is not linear. Certain interindividual differences such as a good school education or a greater brain volume are associated with a higher resilience against brain damage that is usually referred to as cognitive reserve (CR). Individuals with high CR have a diminished risk for dementia and both active and passive concepts for this phenomenon are discussed. In the concept of passive CR, peculiarities of brain structure such as higher synapse or neuron counts are regarded as buffers against brain damage. Symptoms of dementia do not occur until a certain threshold of damage is passed. In addition to the passive concepts, active mechanisms are also discussed that are associated with the ability to maintain a certain level of cognitive performance in the face of progressive neurodegeneration for a longer period. In subjects with healthy cognitive function, these active mechanisms contribute to the adaptation of brain activity when task difficulty level is increased. Confronted with progressive neurodegeneration, these active mechanisms help to compensate for brain damage. Individuals with higher CR show more efficient activation for solving the same task, which helps them to preserve normal levels of cognitive performance for a longer period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aizenstein HJ, Nebes RD, Saxton JA et al (2008) Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 65:1509–1517

    PubMed  Google Scholar 

  2. Akbaraly TN, Portet F, Fustinoni S et al (2009) Leisure activities and the risk of dementia in the elderly: results from the Three-City Study. Neurology 73:854–861

    PubMed  CAS  Google Scholar 

  3. Alexander GE, Furey ML, Grady CL et al (1997) Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 154:165–172

    PubMed  CAS  Google Scholar 

  4. Ampuero I, Ros R, Royuela A et al (2008) Risk factors for dementia of Alzheimer type and aging-associated cognitive decline in a Spanish population based sample, and in brains with pathology confirmed Alzheimer’s disease. J Alzheimers Dis 14:179–191

    PubMed  CAS  Google Scholar 

  5. Barnes LL, Wilson RS, Bienias JL et al (2005) Sex differences in the clinical manifestations of Alzheimer disease pathology. Arch Gen Psychiatry 62:685–691

    PubMed  Google Scholar 

  6. Bartres-Faz D, Sole-Padulles C, Junque C et al (2009) Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biol Psychol 80:256–259

    PubMed  Google Scholar 

  7. Basso MR, Bornstein RA (2000) Estimated premorbid intelligence mediates neurobehavioral change in individuals infected with HIV across 12 months. J Clin Exp Neuropsychol 22:208–218

    PubMed  CAS  Google Scholar 

  8. Bennett DA, Schneider JA, Tang Y et al (2006) The effect of social networks on the relation between Alzheimer’s disease pathology and level of cognitive function in old people: a longitudinal cohort study. Lancet Neurol 5:406–412

    PubMed  Google Scholar 

  9. Bennett DA, Schneider JA, Wilson RS et al (2005) Education modifies the association of amyloid but not tangles with cognitive function. Neurology 65:953–955

    PubMed  CAS  Google Scholar 

  10. Bennett DA, Wilson RS, Schneider JA et al (2003) Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology 60:1909–1915

    PubMed  CAS  Google Scholar 

  11. Bickel H, Riemenschneider M, Kurz A (2006) Associations between dementia and head circumference as a measure of brain reserve – results from the bavarian school sisters study. Psychiatr Prax 33:138–144

    PubMed  Google Scholar 

  12. Blennow K, De Leon Mj, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    PubMed  CAS  Google Scholar 

  13. Boles Ponto LL, Magnotta VA, Moser DJ et al (2006) Global cerebral blood flow in relation to cognitive performance and reserve in subjects with mild memory deficits. Mol Imaging Biol 8:363–372

    Google Scholar 

  14. Bonaduce D, Petretta M, Cavallaro V et al (1998) Intensive training and cardiac autonomic control in high level athletes. Med Sci Sports Exerc 30:691–696

    PubMed  CAS  Google Scholar 

  15. Bruandet A, Richard F, Bombois S et al (2008) Cognitive decline and survival in Alzheimer’s disease according to education level. Dement Geriatr Cogn Disord 25:74–80

    PubMed  CAS  Google Scholar 

  16. Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17:85–100

    PubMed  Google Scholar 

  17. Dartigues JF, Gagnon M, Michel P et al (1991) The paquid research program on the epidemiology of dementia. Methods and initial results. Rev Neurol 147:225–230

    PubMed  CAS  Google Scholar 

  18. Davis SW, Dennis NA, Daselaar SM et al (2008) Que PASA? The posterior-anterior shift in aging. Cereb Cortex 18:1201–1209

    PubMed  Google Scholar 

  19. Del Ser T, Hachinski V, Merskey H et al (1999) An autopsy-verified study of the effect of education on degenerative dementia. Brain 122 (12):2309–2319

    Google Scholar 

  20. Drzezga A, Grimmer T, Peller M et al (2005) Impaired cross-modal inhibition in Alzheimer disease. PLoS Med 2:288

    Google Scholar 

  21. Esposito F, Aragri A, Pesaresi I et al (2008) Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn Reson Imaging 26:905–913

    PubMed  Google Scholar 

  22. Forstmeier S, Maercker A (2008) Motivational reserve: lifetime motivational abilities contribute to cognitive and emotional health in old age. Psychol Aging 23:886–899

    PubMed  Google Scholar 

  23. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    PubMed  CAS  Google Scholar 

  24. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26:15–29

    PubMed  Google Scholar 

  25. Fratiglioni L, Grut M, Forsell Y et al (1991) Prevalence of Alzheimer’s disease and other dementias in an elderly urban population: relationship with age, sex, and education. Neurology 41:1886–1892

    PubMed  CAS  Google Scholar 

  26. Fratiglioni L, Paillard-Borg S, Winblad B (2004) An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 3:343–353

    PubMed  Google Scholar 

  27. Fratiglioni L, Wang HX, Ericsson K et al (2000) Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet 355:1315–1319

    PubMed  CAS  Google Scholar 

  28. Garibotto V, Borroni B, Kalbe E et al (2008) Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology 71:1342–1349

    PubMed  CAS  Google Scholar 

  29. Gellerstedt N (1933) Zur Kenntnis der Hirnveränderungen bei der normalen Altersinvolution. Upsala Läkarefören Förhandl 38:193–409

    Google Scholar 

  30. Glatt SL, Hubble JP, Lyons K et al (1996) Risk factors for dementia in Parkinson’s disease: effect of education. Neuroepidemiology 15:20–25

    PubMed  CAS  Google Scholar 

  31. Gould RL, Arroyo B, Brown RG et al (2006) Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology 67:1011–1017

    PubMed  CAS  Google Scholar 

  32. Grady CL, Mcintosh AR, Beig S et al.(2003) Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 23:986–993

    PubMed  CAS  Google Scholar 

  33. Gusnard DA, Raichle ME, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    PubMed  CAS  Google Scholar 

  34. Hairston WD, Hodges DA, Casanova R et al (2008) Closing the mind’s eye: deactivation of visual cortex related to auditory task difficulty. Neuroreport 19:151–154

    PubMed  Google Scholar 

  35. Hall CB, Derby C, Levalley A et al (2007) Education delays accelerated decline on a memory test in persons who develop dementia. Neurology 69:1657–1664

    PubMed  CAS  Google Scholar 

  36. Hanyu H, Sato T, Shimizu S et al (2008) The effect of education on rCBF changes in Alzheimer’s disease: a longitudinal SPECT study. Eur J Nucl Med Mol Imaging 35:2182–2190

    PubMed  Google Scholar 

  37. Jankowsky JL, Melnikova T, Fadale DJ et al (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 25:5217–5224

    PubMed  CAS  Google Scholar 

  38. Jellinger KA (2006) Clinicopathological analysis of dementia disorders in the elderly – an update. J Alzheimers Dis 9:61–70

    PubMed  Google Scholar 

  39. Karp A, Paillard-Borg S, Wang HX et al (2006) Mental, physical and social components in leisure activities equally contribute to decrease dementia risk. Dement Geriatr Cogn Disord 21:65–73

    PubMed  Google Scholar 

  40. Katzman R (1993) Education and the prevalence of dementia and Alzheimer’s disease. Neurology 43:13–20

    PubMed  CAS  Google Scholar 

  41. Katzman R, Terry R, Deteresa R et al (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144

    PubMed  CAS  Google Scholar 

  42. Kemppainen NM, Aalto S, Karrasch M et al (2008) Cognitive reserve hypothesis: Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild Alzheimer’s disease. Ann Neurol 63:112–118

    PubMed  Google Scholar 

  43. Kidron D, Black SE, Stanchev P et al (1997) Quantitative MR volumetry in Alzheimer’s disease. Topographic markers and the effects of sex and education. Neurology 49:1504–1512

    PubMed  CAS  Google Scholar 

  44. Kittner SJ, White LR, Farmer ME et al (1986) Methodological issues in screening for dementia: the problem of education adjustment. J Chronic Dis 39:163–170

    PubMed  CAS  Google Scholar 

  45. Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257:271–280

    PubMed  Google Scholar 

  46. Koepsell TD, Kurland BF, Harel O et al (2008) Education, cognitive function, and severity of neuropathology in Alzheimer disease. Neurology 70:1732–1739

    PubMed  CAS  Google Scholar 

  47. Kozorovitskiy Y, Gross CG, Kopil C et al (2005) Experience induces structural and biochemical changes in the adult primate brain. Proc Natl Acad Sci U S A 102:17478–17482

    PubMed  CAS  Google Scholar 

  48. Langa KM, Larson EB, Karlawish JH et al (2008) Trends in the prevalence and mortality of cognitive impairment in the United States: is there evidence of a compression of cognitive morbidity? Alzheimers Dement 4:134–144

    PubMed  Google Scholar 

  49. Launer LJ, Andersen K, Dewey ME et al (1999) Rates and risk factors for dementia and Alzheimer’s disease: results from EURODEM pooled analyses. EURODEM Incidence Research Group and Work Groups. European Studies of Dementia. Neurology 52:78–84

    PubMed  CAS  Google Scholar 

  50. Laurienti PJ, Burdette JH, Wallace MT et al (2002) Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 14:420–429

    PubMed  Google Scholar 

  51. Lazarov O, Robinson J, Tang YP et al (2005) Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell 120:701–713

    PubMed  CAS  Google Scholar 

  52. Letenneur L, Gilleron V, Commenges D et al (1999) Are sex and educational level independent predictors of dementia and Alzheimer’s disease? Incidence data from the PAQUID project. J Neurol Neurosurg Psychiatry 66:177–183

    PubMed  CAS  Google Scholar 

  53. Maguire EA, Gadian DG, Johnsrude IS et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97:4398–4403

    PubMed  CAS  Google Scholar 

  54. Maguire EA, Spiers HJ, Good CD et al (2003) Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus 13:250–259

    PubMed  Google Scholar 

  55. Maguire EA, Woollett K, Spiers HJ (2006) London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16:1091–1101

    PubMed  Google Scholar 

  56. Mcgurn B, Deary IJ, Starr JM (2008) Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology 71:1051–1056

    PubMed  Google Scholar 

  57. Moriceau S, Sullivan RM (2005) Neurobiology of infant attachment. Dev Psychobiol 47:230–242

    PubMed  Google Scholar 

  58. Mortimer JA, Snowdon DA, Markesbery WR (2003) Head circumference, education and risk of dementia: findings from the Nun Study. J Clin Exp Neuropsychol 25:671–679

    PubMed  Google Scholar 

  59. Obadia Y, Rotily M, Degrand-Guillaud A et al (1997) The PREMAP study: prevalence and risk factors of dementia and clinically diagnosed Alzheimer’s disease in Provence, France. Prevalence of Alzheimer’s disease in Provence. Eur J Epidemiol 13:247–253

    PubMed  CAS  Google Scholar 

  60. Ott A, Van Rossum CT, Van Harskamp F et al (1999) Education and the incidence of dementia in a large population-based study: the Rotterdam Study. Neurology 52:663–666

    PubMed  CAS  Google Scholar 

  61. Paradise M, Cooper C, Livingston G (2009) Systematic review of the effect of education on survival in Alzheimer’s disease. Int Psychogeriatr 21:25–32

    PubMed  Google Scholar 

  62. Pariente J, Cole S, Henson R et al (2005) Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 58:870–879

    PubMed  Google Scholar 

  63. Pereda M, Ayuso-Mateos JL, Gomez Del Barrio A et al (2000) Factors associated with neuropsychological performance in HIV-seropositive subjects without AIDS. Psychol Med 30:205–217

    PubMed  CAS  Google Scholar 

  64. Perneczky R, Diehl-Schmid J, Drzezga A et al (2007) Brain reserve capacity in frontotemporal dementia: a voxel-based 18F-FDG PET study. Eur J Nucl Med Mol Imaging 34:1082–1087

    PubMed  Google Scholar 

  65. Perneczky R, Diehl-Schmid J, Forstl H et al (2007) Male gender is associated with greater cerebral hypometabolism in frontotemporal dementia: evidence for sex-related cognitive reserve. Int J Geriatr Psychiatry 22:1135–1140

    PubMed  Google Scholar 

  66. Perneczky R, Diehl-Schmid J, Pohl C et al (2007) Non-fluent progressive aphasia: Cerebral metabolic patterns and brain reserve. Brain Res 1133:178–185

    PubMed  CAS  Google Scholar 

  67. Perneczky R, Drzezga A, Boecker H et al (2008) Activities of daily living, cerebral glucose metabolism, and cognitive reserve in Lewy body and Parkinson’s disease. Dement Geriatr Cogn Disord 26:475–481

    PubMed  CAS  Google Scholar 

  68. Perneczky R, Drzezga A, Diehl-Schmid J et al (2007) Gender differences in brain reserve: an (18)F-FDG PET study in Alzheimer’s disease. J Neurol 254:1395–1400

    PubMed  CAS  Google Scholar 

  69. Perneczky R, Drzezga A, Diehl-Schmid J et al (2006) Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 77:1060–1063

    PubMed  CAS  Google Scholar 

  70. Perneczky R, Haussermann P, Diehl-Schmid J et al (2007) Metabolic correlates of brain reserve in dementia with Lewy bodies: An FDG PET Study. Dement Geriatr Cogn Disord 23:316–322

    Google Scholar 

  71. Perneczky R, Haussermann P, Drzezga A et al (2009) Fluoro-deoxy-glucose positron emission tomography correlates of impaired activities of daily living in dementia with Lewy bodies: implications for cognitive reserve. Am J Geriatr Psychiatry 17:188–195

    PubMed  Google Scholar 

  72. Perneczky R, Pohl C, Bornschein S et al (2009) Accelerated clinical decline in well-educated patients with frontotemporal lobar degenerations. Eur Arch Psychiatry Clin Neurosci 259:362–367

    PubMed  Google Scholar 

  73. Perneczky R, Wagenpfeil S, Lunetta KL et al (2009) Education attenuates the effect of medial temporal lobe atrophy on cognitive function in Alzheimer’s disease: The MIRAGE Study. J Alzheimers Dis 17:855–862

    PubMed  Google Scholar 

  74. Perneczky R, Wagenpfeil S, Lunetta KL et al (2010) Head circumference, atrophy, and cognition: implications for brain reserve in Alzheimer disease. Neurology 75:137–142

    PubMed  Google Scholar 

  75. Potter GG, Helms MJ, Plassman BL (2008) Associations of job demands and intelligence with cognitive performance among men in late life. Neurology 70:1803–1808

    PubMed  Google Scholar 

  76. Qiu C, Backman L, Winblad B et al (2001) The influence of education on clinically diagnosed dementia incidence and mortality data from the Kungsholmen Project. Arch Neurol 58:2034–2039

    PubMed  CAS  Google Scholar 

  77. Rabinowicz T, Petetot JM, Gartside PS et al (2002) Structure of the cerebral cortex in men and women. J Neuropathol Exp Neurol 61:46–57

    PubMed  Google Scholar 

  78. Raichle ME, Macleod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    PubMed  CAS  Google Scholar 

  79. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    PubMed  CAS  Google Scholar 

  80. Riley KP, Snowdon DA, Markesbery WR (2002) Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Ann Neurol 51:567–577

    PubMed  Google Scholar 

  81. Riudavets MA, Iacono D, Resnick SM et al (2007) Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiol Aging 28:1484–1492

    PubMed  CAS  Google Scholar 

  82. Rocca W, Bonaiuto S, Lippi A et al (1990) Prevalence of clinically diagnosed Alzheimer‘s disease and other dementing disorders: a door-to-door survey in Appignano, Macerata province, Italy. Neurology 40:626–631

    PubMed  CAS  Google Scholar 

  83. Roe CM, Mintun MA, D’angelo G et al (2008) Alzheimer disease and cognitive reserve: variation of education effect with carbon 11-labeled pittsburgh compound B uptake. Arch Neurol 65:1467–1471

    PubMed  Google Scholar 

  84. Roe CM, Xiong C, Grant E et al (2008) Education and reported onset of symptoms among individuals with Alzheimer disease. Arch Neurol 65:108–111

    PubMed  Google Scholar 

  85. Roe CM, Xiong C, Miller JP et al (2008) Interaction of neuritic plaques and education predicts dementia. Alzheimer Dis Assoc Disord 22:188–193

    PubMed  Google Scholar 

  86. Roe CM, Xiong C, Miller JP et al (2007) Education and Alzheimer disease without dementia: support for the cognitive reserve hypothesis. Neurology 68:223–228

    PubMed  Google Scholar 

  87. Roselli F, Tartaglione B, Federico F et al (2008) Rate of MMSE score change in Alzheimer’s disease: influence of education and vascular risk factors. Clin Neurol Neurosurg 111:327–330

    PubMed  Google Scholar 

  88. Roth M, Tomlinson BE, Blessed G (1966) Correlation between scores for dementia and counts of ‚senile plaques‘ in cerebral grey matter of elderly subjects. Nature 209:109–110

    PubMed  CAS  Google Scholar 

  89. Rothschild D (1937) Pathologic changes in senile psychosis and their psychobiologic significance. Am J Psychiatry 93:757–788

    Google Scholar 

  90. Rypma B, Prabhakaran V, Desmond JE et al (1999) Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage 9:216–226

    PubMed  CAS  Google Scholar 

  91. Satz P (1993) Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology 7:273–295

    Google Scholar 

  92. Satz P, Morgenstern H, Miller EN et al (1993) Low education as a possible risk factor for cognitive abnormalities in HIV-1: findings from the multicenter AIDS Cohort Study (MACS). J Acquir Immune Defic Syndr 6:503–511

    PubMed  CAS  Google Scholar 

  93. Sauer J, Ffytche DH, Ballard C et al (2006) Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 129:1780–1788

    PubMed  Google Scholar 

  94. Scarmeas N, Albert SM, Manly JJ et al (2006) Education and rates of cognitive decline in incident Alzheimer’s disease. J Neurol Neurosurg Psychiatry 77:308–316

    PubMed  CAS  Google Scholar 

  95. Scarmeas N, Stern Y (2003) Cognitive reserve and lifestyle. J Clin Exp Neuropsychol 25:625–633

    PubMed  Google Scholar 

  96. Scarmeas N, Zarahn E, Anderson KE et al (2003) Association of life activities with cerebral blood flow in Alzheimer disease: implications for the cognitive reserve hypothesis. Arch Neurol 60:359–365

    PubMed  Google Scholar 

  97. Sluming V, Barrick T, Howard M et al (2002) Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage 17:1613–1622

    PubMed  Google Scholar 

  98. Snowdon DA (2003) Healthy aging and dementia: findings from the Nun Study. Ann Intern Med 139:450–454

    PubMed  Google Scholar 

  99. Sole-Padulles C, Bartres-Faz D, Junque C et al (2009) Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 30:1114–1124

    PubMed  CAS  Google Scholar 

  100. Sorg C, Riedl V, Muhlau M et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104:18760–18765

    PubMed  CAS  Google Scholar 

  101. Sorg C, Riedl V, Perneczky R et al (2009) Impact of Alzheimer’s disease on the functional connectivity of spontaneous brain activity. Curr Alzheimer Res 6:541–553

    PubMed  CAS  Google Scholar 

  102. Starace F, Baldassarre C, Biancolilli V et al (1998) Early neuropsychological impairment in HIV-seropositive intravenous drug users: evidence from the Italian Multicentre Neuropsychological HIV Study. Acta Psychiatr Scand 97:132–138

    PubMed  CAS  Google Scholar 

  103. Starr JM, Lonie J (2008) Estimated pre-morbid IQ effects on cognitive and functional outcomes in Alzheimer disease: a longitudinal study in a treated cohort. BMC Psychiatry 8:27

    PubMed  Google Scholar 

  104. Stern RA, Silva SG, Chaisson N et al (1996) Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Arch Neurol 53:148–153

    PubMed  CAS  Google Scholar 

  105. Stern Y (1998) Increased risk of mortality in AD patients with higher education? Neurology 51:1238

    PubMed  CAS  Google Scholar 

  106. Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    PubMed  Google Scholar 

  107. Stern Y, Albert S, Tang MX et al (1999) Rate of memory decline in AD is related to education and occupation: cognitive reserve? Neurology 53:1942–1947

    PubMed  CAS  Google Scholar 

  108. Stern Y, Alexander GE, Prohovnik I et al (1992) Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Ann Neurol 32:371–375

    PubMed  CAS  Google Scholar 

  109. Stern Y, Alexander GE, Prohovnik I et al (1995) Relationship between lifetime occupation and parietal flow: implications for a reserve against Alzheimer’s disease pathology. Neurology 45:55–60

    PubMed  CAS  Google Scholar 

  110. Stern Y, Gurland B, Tatemichi TK et al (1994) Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA 271:1004–1010

    PubMed  CAS  Google Scholar 

  111. Stern Y, Habeck C, Moeller J et al (2005) Brain networks associated with cognitive reserve in healthy young and old adults. Cereb Cortex 15:394–402

    PubMed  Google Scholar 

  112. The Canadian Study of Health and Aging (1994) Risk factors for Alzheimer’s disease in Canada. Neurology 44:2073–2080

    Google Scholar 

  113. Uddin LQ, Mooshagian E, Zaidel E et al (2008) Residual functional connectivity in the split-brain revealed with resting-state functional MRI. Neuroreport 19:703–709

    PubMed  Google Scholar 

  114. Valenzuela MJ, Sachdev P (2006) Brain reserve and cognitive decline: a non-parametric systematic review. Psychol Med 36:1065–1073

    PubMed  Google Scholar 

  115. Valenzuela MJ, Sachdev P (2006) Brain reserve and dementia: a systematic review. Psychol Med 36:441–454

    PubMed  Google Scholar 

  116. Wang HX, Karp A, Winblad B et al (2002) Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. Am J Epidemiol 155:1081–1087

    PubMed  Google Scholar 

  117. Webber KM, Perry G, Smith MA et al (2007) The contribution of luteinizing hormone to Alzheimer disease pathogenesis. Clin Med Res 5:177–183

    PubMed  CAS  Google Scholar 

  118. Wermke M, Sorg C, Wohlschlager AM et al (2008) A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(Suppl 1):12–24

    Google Scholar 

  119. Whalley LJ, Starr JM, Athawes R et al (2000) Childhood mental ability and dementia. Neurology 55:1455–1459

    PubMed  CAS  Google Scholar 

  120. White L, Katzman R, Losonczy K (1994) Association of education with incidence of congnitive impairment in three established populations for epidemiologic studies of the elderly. J Clin Epidemiol 47:363–374

    PubMed  CAS  Google Scholar 

  121. Wilson RS, Scherr PA, Schneider JA et al (2007) Relation of cognitive activity to risk of developing Alzheimer disease. Neurology 69:1911–1920

    PubMed  CAS  Google Scholar 

  122. Wolf SA, Kronenberg G, Lehmann K et al (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biol Psychiatry 60:1314–1323

    PubMed  CAS  Google Scholar 

  123. Woollett K, Glensman J, Maguire EA (2008) Non-spatial expertise and hippocampal gray matter volume in humans. Hippocampus 18:981–984

    PubMed  Google Scholar 

  124. Xuereb JH, Brayne C, Dufouil C et al (2000) Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Ann N Y Acad Sci 903:490–496

    PubMed  CAS  Google Scholar 

  125. Zhang M, Katzman R, Salmon D et al (1990) The prevalence of dementia and Alzheimer‘s disease in Shanghai, China: Impact of age, gender, and education. Ann Neurol 27:428–437

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Diese Arbeit stützt sich zum Teil auf Ergebnisse von Studien, die vom Bundesministerium für Bildung und Forschung (Förderkennzeichen: 01G|0420), dem National Institute on Aging (R01-AG09029, R01-HG/AG02213 und P30-AG13846), der medizinischen Fakultät der Technischen Universität München (KKF 8765), den Canadian Institutes of Health Research (MOP-108540) und dem National Institute of Child Health and Human Development (HD42385–01) gefördert wurden. Wir danken allen Patienten und Angehörigen, die an den Studien teilgenommen haben, und den Mitarbeitern des Zentrums für kognitive Störungen für ihre Unterstützung bei den Untersuchungen. Dorottya Ruisz danken wir für ihre wertvolle Hilfe beim Korrekturlesen. Alle zitierten eigenen Untersuchungen wurden unter Einhaltung der von der Deklaration von Helsinki vorgegebenen Richtlinien durchgeführt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Perneczky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perneczky, R., Alexopoulos, P., Schmid, G. et al. Kognitive Reservekapazität und ihre Bedeutung für Auftreten und Verlauf der Demenz. Nervenarzt 82, 325–335 (2011). https://doi.org/10.1007/s00115-010-3165-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-010-3165-7

Schlüsselwörter

Keywords

Navigation