Skip to main content
Log in

Wirbelkörperersatz in der Wirbelsäulenchirurgie

Vertebral body replacement in spine surgery

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Der Wirbelkörperersatz kann sowohl mit autologen und allogenen Knochenmaterialien als auch mit Wirbelkörperersatzimplantaten, sog. Cages, durchgeführt werden. Die seit Kurzem verfügbaren expandierenden Cages werden zunehmend häufiger eingesetzt. Ziel dieser Arbeit war es daher, die bisher verfügbaren biomechanischen und klinischen Daten expandierbarer Korporektomie-Cages auf der Basis eigener experimenteller Untersuchungen und klinischer Erfahrungen zusammenzufassen und den etablierten Implantaten und Transplantaten gegenüber zu stellen.

Die neuen expandierbaren Cages weisen einige operationstechnische Vorteile auf, wenn die chirurgischen Besonderheiten dieser Implantate Beachtung finden. Unter biomechanischen Gesichtspunkten sind zervikale und thorakolumbale expandierbare Cages in Bezug auf die dreidimensionale Steifigkeit nicht expandierbaren Formen zumindest ebenbürtig. Designvariationen scheinen für die biomechanische Stabilität nur eine untergeordnete Rolle zu spielen. Auch in Bezug auf die mittelfristigen klinischen Ergebnisse bei der Versorgung von Frakturen, Metastasen und Spondylodiszitiden in der zervikalen und thorakolumbalen Wirbelsäule sind anhand derzeit vorliegender Daten keine wesentlichen Unterschiede zwischen expandierbaren und nicht expandierbaren Cages zu erwarten. Unklar bleibt momentan jedoch, ob sich das erhöhte „stress shielding“ expandierbarer Cages längerfristig negativ auf die erwünschte Fusion auswirken kann.

Abstract

Autografts and allogeneous bone grafts as well as cages are used for the reconstruction of the anterior column after corpectomy. Recently, expandable cages for vertebral body replacement have been developed. Based on our own experience, the purpose of this study was to summarize the available biomechanical and clinical data of expandable corpectomy cages and to compare it with established fixation techniques.

If used correctly, expandable cages offer several surgical advantages in comparison to non-expandable cages. However there were no significant differences between the biomechanical properties of expandable and non-expandable cages. Additionally, design variations of expandable corpectomy cages did not show any significant impact on the biomechanical stability. Currently available mid-term clinical and radiological data on the treatment of fractures, metastasis and infection of the cervical, thoracic and lumbar spine demonstrated no significant difference between expandable and non-expandable cages. However, the increased stress-shielding effect of expandable cages compared to non-expandable cages might result in a deterioration of the long-term clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Ab. 2a–d
Abb. 3
Abb. 4a–d
Abb. 5a–e
Abb. 6a–d
Abb. 7a–f
Abb. 8a–e
Abb. 9a–h
Abb. 10a–f
Abb. 11a–f

Literatur

  1. Aebi M, Etter C, Kehl T, Thalgott J (1988) The internal skeletal fixation system. A new treatment of thoracolumbar fractures and other spinal disorders. Clin Orthop 227: 30–43

    CAS  PubMed  Google Scholar 

  2. Alici E, Alku O, Dost S (1990) Prothesis designed for vertebral body replacement. J Biomech 23: 799–809

    CAS  PubMed  Google Scholar 

  3. Anderson L, Stivers B, Park WI 3rd (1974) Multiple level anterior cervical spine fusion. A report of 16 cases. J Trauma 14: 653–674,

    CAS  PubMed  Google Scholar 

  4. Arrington ED, Smith W, Chambers HG, Bucknell AL, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop 329: 300–309

    PubMed  Google Scholar 

  5. Bagby G (1999) The Bagby and Kuslich (BAK) method of lumbar interbody fusion. Spine 24: 1857

    Article  CAS  PubMed  Google Scholar 

  6. Bankwart JC, Asher M, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20: 1055–1060

    CAS  PubMed  Google Scholar 

  7. Been H (1991) Anterior decompression and stabilization of thoracolumbar burst fractures by the use of the Slot-Zielke device. Spine 16: 70–77

    CAS  PubMed  Google Scholar 

  8. Benzel EC (1997) Biomechanics of cervical spine surgery for tumor and degenerative diseases. Neurol Med Chir (Tokyo) 37: 583–593

    Google Scholar 

  9. Blauth M, Knop C, Bastian L (1997) Behandlungsstrategie und Ergebnisse bei Frakturen der BWS und LWS. Hefte Z Unfallchirurg 268: 171–179

    Google Scholar 

  10. Blauth M, Knop C, Bastian L, Lobenhofer P (1997) Neue Entwicklungen in der Chirurgie der verletzten Wirbelsäule. Orthopäde 26: 437–449

    Google Scholar 

  11. Boden SD, Martin GJ, Horton WC, Truss TL, Sandhu HS (1998) Laproscopic anterior spinal arthrodesis with rh BMP-2 in a titanium interbody threaded cage. J Spinal Disord 11: 95–101

    CAS  PubMed  Google Scholar 

  12. Bouchard J, Koka A, Bensusan JS, Stevenson JS, Emery SE (1994) Effects of radiation on posterior spinal fusion: A rabbit model. Spine 19: 1836–41

    CAS  PubMed  Google Scholar 

  13. Brantigan JW, McAffee AP, Cunningham BW (1994) Interbody lumbar fusion using a carbon fiber implant versus allograft bone. An investigational study in the Spanish goat. Spine 19: 1436–1444

    CAS  PubMed  Google Scholar 

  14. Brantigan JW, Steffi A, Geiger JM (1991) A carbon fiber implant to aid interbody lumbar fusion. Mechanical testing. Spine 16: 277–282

    Google Scholar 

  15. Brodke DS, Dick J, Kunz DN, McCabe R, Zdeblick TA (1997) Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage. Spine 22: 26–31

    Article  CAS  PubMed  Google Scholar 

  16. Brooke NS, Rorke A, King AT, Gullan RW (1997) Preliminary experience of carbon fibre cage prostheses for treatment of cervical spine disorders. Br J Neurosurg 11: 221–227

    Article  CAS  PubMed  Google Scholar 

  17. Burger EH, Klein-Nulend J, Veldhuijzen JP (1992) Mechanical stress and osteogenesis in vitro. J Bone Mineral Res 7: 327–401

    Google Scholar 

  18. Carter DR, Wong M (1988) Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 6: 148–154

    CAS  PubMed  Google Scholar 

  19. Cunningham BW, Kanayama M, Parker LM (1999) Osteogenic protein versus autologous interbody arthrodesis in the sheep thoracic spine. A endoscopic study using the Bagby and Kuslich interbody fusion device. Spine 24: 509–518

    Article  CAS  PubMed  Google Scholar 

  20. Daniaux H, Seykora P, Genelin A, Lang T, Kathrein A (1991) Application of posterior plating and modifications in thoracolumbar spine injuries. Indication, techniques and results. Spine 16 (Suppl): 125–133

    Google Scholar 

  21. Dennis S, Watkins R, Landaker S, Dillin W, Springer D (1989) Comparison of disc space heights after anterior lumbar interbody fusion. Spine 14: 876–878

    CAS  PubMed  Google Scholar 

  22. DiAngelo DJ, Foley K, Vossel KA, Rampersaud YR, Jansen TH (2000) Anterior cervical plating reverses load transfer through multilevel strut-grafts. Spine 25: 783–795

    Article  CAS  PubMed  Google Scholar 

  23. Do Koh Y, Lin T, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine: 15–21

  24. Dorai Z, Morgan H, Coimbra C (2003) Titanium cage reconstruction after cervical corpectomy. J Neurosurg 99 (Suppl): 3–7

    Google Scholar 

  25. Eleraky MA, LlanosC, Sonntag VK (1999) Cervical corpectomy: report of 185 cases and review of the literature. Can J Neurosurg 90 (Suppl): 35–41

    CAS  Google Scholar 

  26. Foley KT, DiAngelo D, Rampersaud YR, Vossel KA, Jansen TH (1999) The in vitro effects of instrumentation on multilevel cervical strut-graft mechanics. Spine 24: 2366–2376

    Article  CAS  PubMed  Google Scholar 

  27. Freidberg SR, Gumley G, Pfeifer BA, Hybels RL (1990) Vascularized fibular graft to replace resected cervical vertebral bodies. Case report. J Neurosurg 72: 519–20

    Google Scholar 

  28. Goh JC, Wong H, Thambyah A, Yu CS (2000) Influence of PLIF cage size on lumbar spine stability. Spine 25: 35–39

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Darder JM, Atienza C, Molla F (2001) Biomechanical evaluation of an anterior cervical plate-cage fixation system. Neurocirugia (Astur) 12: 152–157

    Google Scholar 

  30. Goulet JA, Senunas L, Desilva GL, Greenfield ML (1997) Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop 339: 76–81

    PubMed  Google Scholar 

  31. Grubb MR, Curreer B, Shih JS, Bonin V, Grabowski JJ, Chao EY (1998) Biomechanical evaluation of anterior cervical spine stabilization. Spine 23: 886–892

    Article  CAS  PubMed  Google Scholar 

  32. Hacker RJ (2002) Threaded cages for degenerative cervical disease. Clin Orthop 394: 39–46

    PubMed  Google Scholar 

  33. Hecht BP, Fischgrund J, Herkowitz HN, Penman L, Toth JM, Shirkhoda A (1999) The use of recombinant human bone morphogenetic protein 2 (rhBMP-2) to promote spinal fusion in a nonhuman primate anterior interbody fusion model. Spine 24: 629–636

    Article  CAS  PubMed  Google Scholar 

  34. Hollowell JP, Vollmer D, Wilson CR, Pintar FA, Yoganandan N (1996) Biomechanical analysis of thoracolumbar interbody constructs. How important is the endplate? Spine 21: 1032–1036

    Article  CAS  PubMed  Google Scholar 

  35. Hussein AA, El-Karef. E, Hafez M (2001) Reconstructive surgery in spinal tumours. Eur J Surg Oncol 27: 196–199

    Article  CAS  PubMed  Google Scholar 

  36. Isomi T, Panjabi M, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine 24: 2219–2223

    Article  CAS  PubMed  Google Scholar 

  37. Janssen ME, Lam C, Beckham R (2001) Outcomes of allogenic cages in anterior and posterior lumbar interbody fusion. Review. Eur Spine J 10 (Suppl): 158–168

    Article  Google Scholar 

  38. Jenis LG, Dunn E, An HS (1999) Metastatic disease of the cervical spine. A review. Clin Orthop 359: 89–103

    PubMed  Google Scholar 

  39. Jost B, Cripton P, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP (1998) Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J 7: 132–141

    CAS  PubMed  Google Scholar 

  40. Kaden B, Koch W, Varchim-Schultheiß K, Wunsch M, Fuhrmann G (1996) Biomechanical studies of transthoracic vertebral body replacement with autologous bone grafts (fibula and rib). Neurosurg Rev 19: 17–21

    CAS  PubMed  Google Scholar 

  41. Kanayama M, Cunningham B, Haggerty CJ, Abumi K, Kaneda K, McAfee PC (2000) In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg (Spine 2) 93: 259–265

    Google Scholar 

  42. Kanayama M, Hashimoto T, Shigenobu K, Oha F, Ishida T, Yamane S (2003) Pitfalls of anterior cervical fusion using titanium mesh and local autograft. J Spinal Disord Tech 16: 513–518

    Article  PubMed  Google Scholar 

  43. Kandziora F, Kerschbaumer F, Starker M, Mittlmeier T (2000) Biomechanical assessment of the transoral plate fixation for atlantoaxial instability. Spine 25: 1555–1561

    Article  CAS  PubMed  Google Scholar 

  44. Kandziora F, Mittlmeier T, Kerschbaumer F (1999) Stage related surgery for cervical spine instability in rheumatoid arthritis. Eur Spine J 8: 371–381

    Article  CAS  PubMed  Google Scholar 

  45. Kandziora F, Pflugmacher R, Schaefer J, Scholz M, Ludwig K, Schleicher P, Haas NP (2003) Biomechanical comparison of expandable cages for vertebral body replacement in the cervical spine. J Neurosurg 99 (Suppl): 91–97

    PubMed  Google Scholar 

  46. Kandziora F, Pflugmacher R, Schafer J, Born C, Duda G, Haas NP, Mittlmeier T (2001) Biomechanical comparison of cervical spine interbody fusion cages. Spine 26: 1850–1857

    Article  CAS  PubMed  Google Scholar 

  47. Kandziora F, Pflugmacher R, Scholz M, Schnake K, Schröder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine 26: 1028–1037

    Article  CAS  PubMed  Google Scholar 

  48. Kandziora F, Schollmeier G, Scholz M et al. (2002) Influence of cage design on interbody fusion in a sheep cervical spine model. J Neurosurg 96 (Suppl): 321–332

    PubMed  Google Scholar 

  49. Kettler A, Wilke H, Dietl R, Krammer M, Lumenta C, Claes L (2000) Stabilising effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg (Spine 2) 92: 87–92

  50. Kinoshita A, Kataoka K, Taneda M (1999) Multilevel vertebral body replacement with a titanium mesh spacer for aneurysmal bone cyst: technical note. Minim Invasive Neurosurg 42: 156–158

    CAS  PubMed  Google Scholar 

  51. Kirkpatrick JS, Levi J, Carillo J, Moeini SR (1999) Reconstruction after multilevel corpectomy in the cervical spine. A sagittal plane biomechanical study. Spine 24: 1186–1190

    Article  CAS  PubMed  Google Scholar 

  52. Knop C, Bloth M, Buhren V et al. (2001) Surgical treatment of injuries of the thoracolumbar transition—3: Follow-up examination. Results of a prospective multi-center study by the „Spinal“ Study Group of the German Society of Trauma Surgery. Unfallchirurg 104: 583–600

    CAS  PubMed  Google Scholar 

  53. Knop C, Lange U, Bastian L, Blauth M (2000) Three-dimensional motion analysis with Synex. Eur Spine J 9: 472–485

    Article  CAS  PubMed  Google Scholar 

  54. Kumar A, Kurzak J, Doherty BJ, Dickson JH (1993) Interspace distraction and graft subsidence after anterior lumbar fusion with femoral strut allograft. Spine 18: 2393–2400

    CAS  PubMed  Google Scholar 

  55. Kurz M, Garfin S, Booth RE (1989) Harvesting autogenous iliac bone grafts. A review of complications and techniques. Spine 14: 1324–1331

    CAS  PubMed  Google Scholar 

  56. Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, Griffith SL (2000) Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine 25: 2656–2662

    Article  CAS  PubMed  Google Scholar 

  57. Kuzhupilly RR, Lieberman I, McLain RF, Valdevit A, Kambic H, Richmond BJ (2002) In vitro stability of FRA spacers with integrated crossed screws for anterior lumbar interbody fusion. Spine 27: 923–928

    Article  PubMed  Google Scholar 

  58. Laing RJ, Ng I, Seeley HM, Hutchinson PJ (2001) Prospective study of clinical and radiographical outcome after anterior cervical discectomy. Br J Neurosurg 15: 319–323

    Article  CAS  PubMed  Google Scholar 

  59. Lange U, Knop C, Bastian L, Blauth M (2003) Prospective multicenter study with a new implant for thoracolumbar vertebral body replacement. Arch Orthop Trauma Surg 123: 203–208

    PubMed  Google Scholar 

  60. Lee SW, Lin T, You JW, An HS (2000) Biomechanical effects of anterior grafting devices on the rotational stability of spinal constructs. J Spinal Disord 13: 150–155

    Article  CAS  PubMed  Google Scholar 

  61. Liljenqvist U, Lerner T, Bullmann V, Hackenberg L, Halm H, Winkelmann W (2003) Titanium cages in the surgical treatment of severe vertebral osteomyelitis. Eur Spine J 12: 606–612

    Article  CAS  PubMed  Google Scholar 

  62. Lin P (1985) Posterior lumbar interbody fusion technique: complications and pitfalls. Clin Orthop 193: 90–102

    PubMed  Google Scholar 

  63. Lowery GL, Harms J (1996) Titanium surgical mesh for vertebral defect replacement and intervertebral spacers. In: Thalgott JS, Aebi M (eds) Manual of internal fixation of the spine. Lippincott-Raven, Philadelphia, pp 127–146

  64. Lund T, Oxland T, Jost B, Cripton P, Grassmann S, Etter C, Nolte LP (1998) Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br 80: 351–359

    CAS  PubMed  Google Scholar 

  65. Main JA, Wells M, Spengler DM, Strauss AM, Keller TS (1989) Flexible device for vertebral body replacement. J Biomed Eng 11: 113–118

    CAS  PubMed  Google Scholar 

  66. Majd ME, Vadhva M, Holt RT (1999) Anterior cervical reconstruction using titanium cages with anterior plating. Spine 24: 1604–1610

    Article  CAS  PubMed  Google Scholar 

  67. Martin GJ, Haid RJ, MacMillan M, Rodts GE, Berkman R (1999) Anterior cervical discectomy with freeze-dried fibula allograft. Overview of 317 cases and literature review. Spine 24: 852–858

    Article  PubMed  Google Scholar 

  68. Matge G (1998) Anterior interbody fusion with the BAK-cage in cervical spondylosis. Acta Neurochir 140: 1–8

    Article  CAS  Google Scholar 

  69. Munoz FLO, de las Heras B, Lopez VC, Siguero JJA (1998) Comparison of three techniques of anterior fusion in single-level cervical disc herniation. Eur Spine J 7: 512–516

    Article  PubMed  Google Scholar 

  70. Narotam PK, Pauley S, McGinn GJ (2003) Titanium mesh cages for cervical spine stabilization after corpectomy: a clinical and radiological study. J Neurosurg 99 (Suppl): 172–180

    PubMed  Google Scholar 

  71. Nibu K, Panjabi M, Oxland T, Cholewicki J (1997) Multidirectional stabilising potential of BAK interbody spinal fusion system for anterior surgery. J Spinal Disord 10: 357–362

    CAS  PubMed  Google Scholar 

  72. Okuyama K, Abe E, Chiba M, Ishikawa N, Sato K (1996) Outcome of anterior decompression and stabilization for thoracolumbar unstable burst fractures in the absence of neurologic deficits. Spine 21: 620–625

    Article  CAS  PubMed  Google Scholar 

  73. Oxland TR, Hoffer Z, Nydegger T, Rathonyi GC, Nolte LP (2000) A comparative biomechanical investigation of anterior lumbar interbody cages: central and bilateral approaches. J Bone Joint Surg Am 82: 383–393

    CAS  PubMed  Google Scholar 

  74. Parthiban JK, Singhania B, Ramani PS (2002) A radiological evaluation of allografts (ethylene oxide sterilized cadaver bone) and autografts in anterior cervical fusion. Neurol India 50: 17–22

    CAS  PubMed  Google Scholar 

  75. Perrin RG, McBroom R, Perrin RG (1991) Metastatic tumors of the cervical spine. Clin Neurosurg 37: 740–755

    CAS  PubMed  Google Scholar 

  76. Profeta G, de Falco R, Ianniciello G, Profeta L, Cigliano A, Raja AI (2000) Preliminary experience with anterior cervical microdiscetomy and interbody titanium cage fusion (Novus CT-Ti) in patients with cervical disc disease. Surg Neurol 53: 417–426

    Google Scholar 

  77. Rapoff AJ, Ghanayem. A, Zdeblick TA (1997) Biomechanical comparison of posterior lumbar interbody fusion cages. Spine 22: 2375–2379

    Article  CAS  PubMed  Google Scholar 

  78. Robertson PA, Rawlinson H, Hadlow AT (2004) Radiologic stability of titanium mesh cages for anterior spinal reconstruction following thoracolumbar corpectomy. J Spinal Disord Tech 17: 44–52

    Article  PubMed  Google Scholar 

  79. Robinson RA (1964) Anterior and posterior cervical spine fusions. Clin Orthop 35: 34–36

    CAS  PubMed  Google Scholar 

  80. Rohlmann A, Zander T, Fehrmann M, Klöckner C, Bergmann G (2002) Influence of implants for vertebral body replacement on the mechanical behavior of the lumbar spine. Orthopäde 31: 503–507

    Google Scholar 

  81. Sack S (1966) Anterior interbody fusion of the lumbar spine. Indications and results in 200 cases. Clin Orthop 44: 163–170

    CAS  PubMed  Google Scholar 

  82. Sandhu HS, Turner S, Kabo M et al. (1996) Distractive properties of threaded interbody fusion device. An in vivo model. Spine 21: 1201–1210

    Article  CAS  PubMed  Google Scholar 

  83. Schnee CL, Freese A, Weil RJ, Marcotte PJ (1997) Analysis of harvest morbidity and radiographic outcome using autograft for anterior cervical fusion. Spine 22: 2222–2227

    Article  CAS  PubMed  Google Scholar 

  84. Schultz KD, McLaughlin M, Haid RW, Comey CH, Rodts GE, Alexander J (2000) Single-stage anterior-posterior decompression and stabilization for complex cervical spine disorders. J Neurosurg 93 (Suppl): 214–221

    CAS  Google Scholar 

  85. Shimamoto N, Cunningham B, Dmitriev AE, Minami A, McAfee PC (2001) Biomechanical evaluation of stand-alone interbody fusion cages in the cervical spine. Spine 26: 432–436

    Article  Google Scholar 

  86. Siqueira EB, Kranzler L (1983) Replacement of cervical vertebral body with a tibial bone graft. South Med J 76: 607–609

    CAS  PubMed  Google Scholar 

  87. Solini A, Orsini G, Broggi S (1989) Metal cementless prosthesis for vertebral body replacement of metastatic malignant disease of the cervical spine. J Spinal Disord Tech 2: 254–262

    CAS  Google Scholar 

  88. Spivak JM, Bharam S, Chen D, Kummer FJ (2000) Internal fixation of cervical trauma following corpectomy and reconstruction. The effects of posterior element injury. Bull Hosp Jt Dis 59: 47–51

    CAS  PubMed  Google Scholar 

  89. Stauffer RN, Conventry M (1972) Anterior interbody lumbar spine fusion: Analysis of Mayo Clinics series. J Bone Joint Surg Am 54: 756

    CAS  PubMed  Google Scholar 

  90. Stoltze D, Harm J (1999) Correction of posttraumatic deformities. Principles and methods. Orthopäde 28: 731–745

  91. Svendgaard NA, Cronqist S, Delgado T, Salford LG (1982) Treatment of severe cervical spine injuries by anterior interbody fusion with early mobilization. Acta Neurochir 60: 91–105

    CAS  Google Scholar 

  92. Tencer AF, Hampton D, Eddy S (1995) Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Spine 20: 2408–2414

    CAS  PubMed  Google Scholar 

  93. Thalgott JS, Xiongsheng C, Giuffre JM (2003) Single stage anterior cervical reconstruction with titanium mesh cages, local bone graft, and anterior plating. Spine J 3: 294–300

    Article  PubMed  Google Scholar 

  94. Togawa D, Bauer T, Brantigan JW, Lowery GL (2001) Bone graft incorporation in radiographically successful human intervertebral body fusion cages. Spine 26: 2744–2750

    Article  CAS  PubMed  Google Scholar 

  95. Tomita K, Kawahara N, Kobayashi T, Yoshida A, Murakami H, Akamaru I, Tomoyuki (2001) Surgical strategy for spinal metastases. Spine 26: 298–306

    Article  CAS  PubMed  Google Scholar 

  96. Vahldiek MJ, Panjabi M (1998) Stability potential of spinal instrumentations in tumor vertebral body replacement surgery. Spine 23: 543–550

    Article  CAS  PubMed  Google Scholar 

  97. Vanden Berghe L, Mehdian H, Lee AJ (1993) Stability of the lumbar spine and method of instrumentation. Acta Orthop Belg 59: 175–180

    PubMed  Google Scholar 

  98. Vavruch L, Hedlund R, Javid D, Leszniewski W, Shalabi A (2002) A prospective randomised comparison between the Cloward procedure and a carbon fiber cage in the cervical spine. A clinical and radiologic study. Spine 27: 1694–1701

    Article  PubMed  Google Scholar 

  99. Vieweg U, Kaden B, Schramm J (1996) Vertebral body replacement with a rib segment block in transthoracic intervention. Zentralbl Neurochir 57: 136–142

    CAS  PubMed  Google Scholar 

  100. Vieweg U, Meyer B, Schramm J (2001) Tumour surgery of the upper cervical spine--a retrospective study of 13 cases. Acta Neurochir 143: 217–225

    Article  CAS  Google Scholar 

  101. Weiner BK, Fraser R (1998) Spine update lumbar interbody fusion cages. Spine 23: 634–640

    CAS  PubMed  Google Scholar 

  102. Wilke HJ, Kettler A, Claes L (2000) Primary stabilizing effect of interbody fusion devices for the cervical spine: an in vitro comparison between three different cage types and bone cement. Eur Spine J 9: 410–416

    Article  CAS  PubMed  Google Scholar 

  103. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7: 148–154

    CAS  PubMed  Google Scholar 

  104. Wittenberg RH, Moeller J, Shea M, White AA, Hayes WC (1990) Compressive strength of autologous and allogenous bone grafts for thoracolumbar and cervical spine fusion. Spine 15: 1073–1078

    CAS  PubMed  Google Scholar 

  105. Younger EM, Chapman. M (1989) Morbidity at bone graft donor sites. J Orthop Trauma 3: 192–195

    CAS  PubMed  Google Scholar 

Download references

Danksagung.

Wir bedanken uns bei den folgenden Firmen für die Bereitstellung der Implantate zur biomechanischen Testung: DePuyAcroMed (Sulzbach, Germany), Synthes (Bochum, Germany), Ulrich (Ulm, Germany).

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kandziora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandziora, F., Schnake, K.J., Klostermann, C.K. et al. Wirbelkörperersatz in der Wirbelsäulenchirurgie. Unfallchirurg 107, 354–371 (2004). https://doi.org/10.1007/s00113-004-0777-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-004-0777-z

Schlüsselwörter

Keywords

Navigation