Skip to main content

Advertisement

Log in

Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Hyperglycemia-induced reactive oxygen species (ROS) production plays a major role in the pathogenesis of diabetic vascular dysfunction. However, the underlying mechanisms remain unclear. Toll-like receptor 4 (TLR4), a key component of innate immunity, is known to be activated during diabetes. Therefore, we hypothesize that hyperglycemia activates TLR4 signaling in vascular smooth muscle cells (VSMCs) that triggers ROS production and causes vascular dysfunction. Rat mesenteric VSMCs exposed to high glucose (25 mmol/l) increased TLR4 expression and activated TLR4 signaling via upregulation of myeloid differentiation factor 88 (MyD88). TLR4 inhibitor CLI-095 significantly attenuated elevated levels of ROS and nuclear factor-kappa B (NF-κB) activity in VSMCs exposed to high glucose. Mesenteric arteries from streptozotocin-induced diabetic rats treated with CLI-095 (2 mg/kg/day) intraperitoneally for 2 weeks exhibited reduced ROS generation and attenuated noradrenaline-induced contraction. These results suggest that hyperglycemia-induced ROS generation and NF-κB activation in VSMCs are at least, in part, mediated by TLR4 signaling. Therefore, strategies to block TLR4 signaling pathways pose a promising avenue to alleviate diabetic-induced vascular complications.

Key messages

  • High glucose-induced TLR4 activation in vascular smooth muscle cells.

  • Inhibition of TLR4 attenuated high glucose-induced ROS production and NF-κB activity in VSMC.

  • Suppression of TLR4 signaling attenuated mesenteric contraction in diabetic rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rochette L, Zeller M, Cottin Y, Vergely C (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim Biophys Acta 1840(9):2709–2729

    Article  CAS  PubMed  Google Scholar 

  2. Paneni F, Beckman JA, Creager MA, Cosentino F (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur Heart J 34(31):2436–2443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sattar N (2013) Revisiting the links between glycaemia, diabetes and cardiovascular disease. Diabetologia 56(4):686–695

    Article  CAS  PubMed  Google Scholar 

  4. Beckman JA, Paneni F, Cosentino F, Creager MA (2013) Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part II. Eur Heart J 34(31):2444–2452

    Article  PubMed  Google Scholar 

  5. Bornfeldt KE, Tabas I (2011) Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab 14(5):575–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Porter KE, Riches K (2013) The vascular smooth muscle cell: a therapeutic target in type 2 diabetes? Clin Sci (Lond) 125(4):167–182

    Article  CAS  Google Scholar 

  7. Ungvari Z, Wolin MS, Csiszar A (2006) Mechanosensitive production of reactive oxygen species in endothelial and smooth muscle cells: role in microvascular remodeling? Antioxidants & redox signaling 8(7–8):1121–1129

    Article  CAS  Google Scholar 

  8. Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172(4):2522–2529

    Article  CAS  PubMed  Google Scholar 

  9. Hattori Y, Hattori S, Sato N, Kasai K (2000) High-glucose-induced nuclear factor kappaB activation in vascular smooth muscle cells. Cardiovasc Res 46(1):188–197

    Article  CAS  PubMed  Google Scholar 

  10. Jeong IK, da Oh H, Park SJ, Kang JH, Kim S, Lee MS, Kim MJ, Hwang YC, Ahn KJ, Chung HY et al (2011) Inhibition of NF-kappaB prevents high glucose-induced proliferation and plasminogen activator inhibitor-1 expression in vascular smooth muscle cells. Exp Mol Med 43(12):684–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145

    Article  CAS  PubMed  Google Scholar 

  13. Bomfim GF, Dos Santos RA, Oliveira MA, Giachini FR, Akamine EH, Tostes RC, Fortes ZB, Webb RC, Carvalho MH (2012) Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond) 122(11):535–543

    Article  CAS  Google Scholar 

  14. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116(11):3015–3025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4(8):444–454

    Article  CAS  PubMed  Google Scholar 

  16. Kuwabara T, Mori K, Mukoyama M, Kasahara M, Yokoi H, Saito Y, Ogawa Y, Imamaki H, Kawanishi T, Ishii A et al (2012) Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice. Diabetologia 55(8):2256–2266

    Article  CAS  PubMed  Google Scholar 

  17. Devaraj S, Dasu MR, Park SH, Jialal I (2009) Increased levels of ligands of Toll-like receptors 2 and 4 in type 1 diabetes. Diabetologia 52(8):1665–1668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jialal I, Kaur H (2012) The role of Toll-Like receptors in diabetes-induced inflammation: implications for vascular complications. Curr Diab Rep. doi:10.1007/s11892-012-0258-7

    PubMed  Google Scholar 

  19. McCarthy CG, Goulopoulou S, Wenceslau CF, Spitler K, Matsumoto T, Webb RC (2014) Toll-like receptors and damage-associated molecular patterns: novel links between inflammation and hypertension. Am J Physiol Heart Circ Physiol 306(2):H184–196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Meyers AJ, Shah RR, Gottlieb PA, Zipris D (2010) Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 88(12):1221–1231

    Article  CAS  Google Scholar 

  21. Sollinger D, Eissler R, Lorenz S, Strand S, Chmielewski S, Aoqui C, Schmaderer C, Bluyssen H, Zicha J, Witzke O et al (2014) Damage-associated molecular pattern activated Toll-like receptor 4 signalling modulates blood pressure in L-NAME-induced hypertension. Cardiovasc Res 101(3):464–472

    Article  CAS  PubMed  Google Scholar 

  22. Kim F, Pham M, Luttrell I, Bannerman DD, Tupper J, Thaler J, Hawn TR, Raines EW, Schwartz MW (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100(11):1589–1596

    Article  CAS  PubMed  Google Scholar 

  23. Devaraj S, Tobias P, Jialal I (2011) Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes. Cytokine 55(3):441–445

    Article  CAS  PubMed  Google Scholar 

  24. Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM (2013) Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 33(4):777–784

    Article  CAS  PubMed  Google Scholar 

  25. Tang J, Allen Lee C, Du Y, Sun Y, Pearlman E, Sheibani N, Kern TS (2013) MyD88-dependent pathways in leukocytes affect the retina in diabetes. PloS one 8(7), e68871. doi:10.1371/journal.pone.0068871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Elms SC, Toque HA, Rojas M, Xu Z, Caldwell RW, Caldwell RB (2013) The role of arginase I in diabetes-induced retinal vascular dysfunction in mouse and rat models of diabetes. Diabetologia 56(3):654–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ii M, Matsunaga N, Hazeki K, Nakamura K, Takashima K, Seya T, Hazeki O, Kitazaki T, Iizawa Y (2006) A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling. Mol Pharmacol 69(4):1288–1295

    Article  CAS  PubMed  Google Scholar 

  28. Kawamoto T, Ii M, Kitazaki T, Iizawa Y, Kimura H (2008) TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol 584(1):40–48

    Article  CAS  PubMed  Google Scholar 

  29. Hua F, Tang H, Wang J, Prunty MC, Hua X, Sayeed I, Stein DG (2015) TAK-242, an antagonist for Toll-like receptor 4, protects against acute cerebral ischemia/reperfusion injury in mice. J Cerebr Blood Flow Metabol 35:536–542

    Article  CAS  Google Scholar 

  30. Touyz RM, Schiffrin EL (1996) Angiotensin II and vasopressin modulate intracellular free magnesium in vascular smooth muscle cells through Na+−dependent protein kinase C pathways. J Biol Chem 271(40):24353–24358

    Article  CAS  PubMed  Google Scholar 

  31. Matsumoto T, Szasz T, Tostes RC, Webb RC (2012) Impaired beta-adrenoceptor-induced relaxation in small mesenteric arteries from DOCA-salt hypertensive rats is due to reduced K(Ca) channel activity. Pharmacol Res 65(5):537–545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Carrillo-Sepulveda MA, Matsumoto T (2014) Phenotypic modulation of mesenteric vascular smooth muscle cells from type 2 diabetic rats is associated with decreased caveolin-1 expression. Cell Physiol Biochem 34(5):1497–1506

    Article  CAS  PubMed  Google Scholar 

  33. Nijmeh J, Moldobaeva A, Wagner EM (2010) Role of ROS in ischemia-induced lung angiogenesis. Am J Physiol Lung Cell Mol Physiol 299(4):L535–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sender V, Stamme C (2014) Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol 7, e29053. doi:10.4161/cib.29053

    Article  PubMed Central  PubMed  Google Scholar 

  35. Sender V, Lang L, Stamme C (2013) Surfactant protein-A modulates LPS-induced TLR4 localization and signaling via beta-arrestin 2. PloS one 8(3), e59896. doi:10.1371/journal.pone.0059896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kawai T, Akira S (2007) Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med 13(11):460–469

    Article  CAS  PubMed  Google Scholar 

  37. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38(10):1654–1661

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto T, Nakayama N, Ishida K, Kobayashi T, Kamata K (2009) Eicosapentaenoic acid improves imbalance between vasodilator and vasoconstrictor actions of endothelium-derived factors in mesenteric arteries from rats at chronic stage of type 2 diabetes. J Pharmacol Exp Ther 329(1):324–334

    Article  CAS  PubMed  Google Scholar 

  39. Guo Z, Su W, Allen S, Pang H, Daugherty A, Smart E, Gong MC (2005) COX-2 up-regulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic db/db mice. Cardiovasc Res 67(4):723–735

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi T, Nogami T, Taguchi K, Matsumoto T, Kamata K (2008) Diabetic state, high plasma insulin and angiotensin II combine to augment endothelin-1-induced vasoconstriction via ETA receptors and ERK. Br J Pharmacol 155(7):974–983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Matsumoto T, Kakami M, Noguchi E, Kobayashi T, Kamata K (2007) Imbalance between endothelium-derived relaxing and contracting factors in mesenteric arteries from aged OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 293(3):H1480–1490

    Article  CAS  PubMed  Google Scholar 

  42. Spitaler MM, Graier WF (2002) Vascular targets of redox signalling in diabetes mellitus. Diabetologia 45(4):476–494

    Article  CAS  PubMed  Google Scholar 

  43. Jay D, Hitomi H, Griendling KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40(2):183–192

    Article  CAS  PubMed  Google Scholar 

  44. Ganguly R, Sahu S, Chavez RJ, Raman P (2014) Trivalent chromium inhibits TSP-1 expression, proliferation and O-GlcNAc signaling in vascular smooth muscle cells in response to high glucose in vitro. Am J Physiol Cell Physiol:ajpcell 00256:02014

    Google Scholar 

  45. Zhang X, Liu L, Chen C, Chi YL, Yang XQ, Xu Y, Li XT, Guo SL, Xiong SH, Shen MR et al (2013) Interferon regulatory factor-1 together with reactive oxygen species promotes the acceleration of cell cycle progression by up-regulating the cyclin E and CDK2 genes during high glucose-induced proliferation of vascular smooth muscle cells. Cardiovasc Diabetol 12:147

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wu WY, Yan H, Wang XB, Gui YZ, Gao F, Tang XL, Qin YL, Su M, Chen T, Wang YP (2014) Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase. PloS one 9(4), e94957. doi:10.1371/journal.pone.0094957

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chan KC, Wu CH, Huang CN, Lan KP, Chang WC, Wang CJ (2012) Simvastatin inhibits glucose-stimulated vascular smooth muscle cell migration involving increased expression of RhoB and a block of Ras/Akt signal. Cardiovasc Ther 30(2):75–84

    Article  CAS  PubMed  Google Scholar 

  48. Li H, Peng W, Zhuang J, Lu Y, Jian W, Wei Y, Li W, Xu Y (2013) Vaspin attenuates high glucose-induced vascular smooth muscle cells proliferation and chemokinesis by inhibiting the MAPK, PI3K/Akt, and NF-kappaB signaling pathways. Atherosclerosis 228(1):61–68

    Article  CAS  PubMed  Google Scholar 

  49. Mudaliar H, Pollock C, Ma J, Wu H, Chadban S, Panchapakesan U (2014) The role of TLR2 and 4-mediated inflammatory pathways in endothelial cells exposed to high glucose. PloS one 9(10), e108844. doi:10.1371/journal.pone.0108844

    Article  PubMed Central  PubMed  Google Scholar 

  50. Liu ZW, Zhu HT, Chen KL, Qiu C, Tang KF, Niu XL (2013) Selenium attenuates high glucose-induced ROS/TLR-4 involved apoptosis of rat cardiomyocyte. Biol Trace Elem Res 156(1–3):262–270

    Article  CAS  PubMed  Google Scholar 

  51. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2(2):253–258

    Article  CAS  PubMed  Google Scholar 

  52. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169(12):6668–6672

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301(5633):640–643

    Article  CAS  PubMed  Google Scholar 

  54. Matsunaga N, Tsuchimori N, Matsumoto T, Ii M (2011) TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 79(1):34–41

    Article  CAS  PubMed  Google Scholar 

  55. Schmidt L, Carrillo-Sepulveda MA (2015) Toll-like receptor 2 mediates vascular contraction and activates RhoA signaling in vascular smooth muscle cells from STZ-induced type 1 diabetic rats. Pflugers Arch. doi:10.1007/s00424-015-1688-2

    PubMed Central  Google Scholar 

  56. Lv J, Chen Q, Shao Y, Chen Y, Shi J (2015) Cross-talk between angiotensin-II and toll-like receptor 4 triggers a synergetic inflammatory response in rat mesangial cells under high glucose conditions. Biochem Biophys Res Comm 459(2):264–269

    Article  CAS  PubMed  Google Scholar 

  57. Lavrentyev EN, Estes AM, Malik KU (2007) Mechanism of high glucose induced angiotensin II production in rat vascular smooth muscle cells. Circ Res 101(5):455–464

    Article  CAS  PubMed  Google Scholar 

  58. Schaeffer G, Levak-Frank S, Spitaler MM, Fleischhacker E, Esenabhalu VE, Wagner AH, Hecker M, Graier WF (2003) Intercellular signalling within vascular cells under high D-glucose involves free radical-triggered tyrosine kinase activation. Diabetologia 46(6):773–783

    Article  CAS  PubMed  Google Scholar 

  59. Lin CC, Lee IT, Yang YL, Lee CW, Kou YR, Yang CM (2010) Induction of COX-2/PGE(2)/IL-6 is crucial for cigarette smoke extract-induced airway inflammation: role of TLR4-dependent NADPH oxidase activation. Free Radic Biol Med 48(2):240–254

    Article  CAS  PubMed  Google Scholar 

  60. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, Billiar TR (2007) HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204(12):2913–2923

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. J Immunol 173(6):3589–3593

    Article  CAS  PubMed  Google Scholar 

  62. Matsumoto T, Noguchi E, Kobayashi T, Kamata K (2007) Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radic Biol Med 42(7):993–1007

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K (2007) Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca(2+)-ATPase function in aortas from diabetic rats. Free Radic Biol Med 43(3):431–443

    Article  CAS  PubMed  Google Scholar 

  64. Bardal S, Misurski D, Qiu X, Desai K, McNeill JR (2006) Chronic treatment with vascular endothelial growth factor preserves agonist-evoked vascular responses in the streptozotocin-induced diabetic rat. Diabetologia 49(4):811–818

    Article  CAS  PubMed  Google Scholar 

  65. Quintela AM, Jimenez R, Gomez-Guzman M, Zarzuelo MJ, Galindo P, Sanchez M, Vargas F, Cogolludo A, Tamargo J, Perez-Vizcaino F et al (2012) Activation of peroxisome proliferator-activated receptor-beta/-delta (PPARbeta/delta) prevents endothelial dysfunction in type 1 diabetic rats. Free Radic Biol Med 53(4):730–741

    Article  CAS  PubMed  Google Scholar 

  66. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ (2014) NADPH oxidases in vascular pathology. Antioxidants & redox signaling 20(17):2794–2814

    Article  CAS  Google Scholar 

  67. Yuen CY, Wong SL, Lau CW, Tsang SY, Xu A, Zhu Z, Ng CF, Yao X, Kong SK, Lee HK et al (2012) From skeleton to cytoskeleton: osteocalcin transforms vascular fibroblasts to myofibroblasts via angiotensin II and Toll-like receptor 4. Circ Res 111(3):e55–66

    Article  CAS  PubMed  Google Scholar 

  68. Hernanz R, Martinez-Revelles S, Palacios R, Martin A, Cachofeiro V, Aguado A, Garcia-Redondo L, Barrus MT, de Batista PR, Briones AM et al (2015) Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. Br J Pharmacol. doi:10.1111/bph.13117

    PubMed  Google Scholar 

  69. Srivastava P, Hegde LG, Patnaik GK, Dikshit M (1998) Role of endothelial-derived reactive oxygen species and nitric oxide in norepinephrine-induced rat aortic ring contractions. Pharmacol Res 38(4):265–274

    Article  CAS  PubMed  Google Scholar 

  70. Miyagawa K, Ohashi M, Yamashita S, Kojima M, Sato K, Ueda R, Dohi Y (2007) Increased oxidative stress impairs endothelial modulation of contractions in arteries from spontaneously hypertensive rats. J Hypertens 25(2):415–421

    Article  CAS  PubMed  Google Scholar 

  71. Kanie N, Kamata K (2000) Contractile responses in spontaneously diabetic mice. I. Involvement of superoxide anion in enhanced contractile response of aorta to norepinephrine in C57BL/KsJ(db/db) mice. Gen Pharmacol 35(6):311–318

    Article  CAS  PubMed  Google Scholar 

  72. Kassan M, Choi SK, Galan M, Bishop A, Umezawa K, Trebak M, Belmadani S, Matrougui K (2013) Enhanced NF-kappaB activity impairs vascular function through PARP-1-, SP-1-, and COX-2-dependent mechanisms in type 2 diabetes. Diabetes 62(6):2078–2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Matsumoto T, Ishida K, Kobayashi T, Kamata K (2009) Pyrrolidine dithiocarbamate reduces vascular prostanoid-induced responses in aged type 2 diabetic rat model. J Pharmacol Sci 110(3):326–333

    Article  CAS  PubMed  Google Scholar 

  74. Carrillo-Sepulveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto-Chaves ML (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA (2000) The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 20(11):E83–88

    Article  PubMed  Google Scholar 

  76. Castillo-Hernandez MC, Guevara-Balcazar G, Lopez-Sanchez P, Asbun-Bojalil J, Lopez RM, Castillo EF, Castillo-Henkel C (2010) The influence of constitutive COX-2 in smooth muscle tissue on the contractile effect of phenylephrine in the rat abdominal aorta. Front Biosci (Elite Ed) 2:441–448

    Article  Google Scholar 

  77. Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, Hazeki O, Akira S, Iizawa Y, Ii M (2009) Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharmacol 157(7):1250–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW (2013) Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 44(9):2545–2552

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by research grants from American Heart Association to M.A. Carrillo-Sepulveda (13POST14690026) and D. Pandey (13POST16810011).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Alicia Carrillo-Sepulveda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Sepulveda, M.A., Spitler, K., Pandey, D. et al. Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med 93, 1341–1354 (2015). https://doi.org/10.1007/s00109-015-1318-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-015-1318-7

Keywords

Navigation