Skip to main content
Log in

Methylation patterns of genes coding for drug-metabolizing enzymes in tamoxifen-resistant breast cancer tissues

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The biological mechanisms underlying resistance to tamoxifen are of considerable clinical significance. However, little is known about the correlation between tamoxifen resistance and methylation of genes related to drug-metabolizing enzymes. To address this issue, we examined the methylation pattern and expression of the selected genes coding for drug-metabolizing enzymes, including COMT, CYP1A1, CYP2D6, NAT1, and SULT1A1 in tamoxifen-resistant and control breast cancers. Bisulfite genomic sequencing and methylation-specific PCR were carried out to evaluate the methylation patterns of the five genes from control (n = 74) and tamoxifen-resistant tissues (n = 37) chosen by an age-matched sampling method. Also, end-point reverse transcriptase polymerase chain reaction (RT-PCR) and real-time RT-PCR were performed to determine RNA expression of the genes. Bisulfite genomic sequencing revealed methylation of the NAT1 gene in 25 of the control cancers (33.8%) and 23 of the resistant tumors (62.2%). Of the five genes, only NAT1 showed a significant lower methylation rate in the control group than in the resistant group (p = 0.004). No significant difference of the methylation rate was found in the other four genes including COMT, CYP1A1, CYP2D6, and SULT1A1 (p > 0.05). Furthermore, the expression rate of NAT1 mRNA was lower in the tumors from the resistant group than in control tumors (28.6% vs. 65.2%, p = 0.031). Real-time RT-PCR analysis demonstrated that the NAT1 gene was more down-regulated in resistant tissues than in control group (p = 0.023). Moreover, malignant cells from the resistant cases demonstrated a higher percentage of positive staining for Ki67 (p = 0.001) and cyclin D1 (p = 0.043) than those from the control group. Taken together, the higher methylation rate of the NAT1 gene is related to tamoxifen resistance, and this fact supports the hypothesis that hypermethylation of the NAT1 gene might affect the initiation of tamoxifen resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CpG:

Cytosine guanine dinucleotide

ER:

Estrogen receptor

MSP:

Methylation-specific PCR

PgR:

Progesterone receptor

References

  1. Lohrisch C, Piccart MJ (2001) Standard medical treatment for early breast cancer. Eur J Cancer 37(Suppl 7):S45–S58

    Article  PubMed  Google Scholar 

  2. MacGregor JI, Jordan VC (1998) Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev 50:151–196

    CAS  PubMed  Google Scholar 

  3. Osborne CK, Coronado E, Allred DC, Wiebe V, DeGregorio M (1991) Acquired tamoxifen resistance: correlation with reduced breast tumor levels of tamoxifen and isomerization of trans-4-hydroxytamoxifen. J Natl Cancer Inst 83:1477–1482

    Article  CAS  PubMed  Google Scholar 

  4. Takimoto GS, Graham JD, Jackson TA, Tung L, Powell RL, Horwitz LD, Horwitz KB (1999) Tamoxifen resistant breast cancer: coregulators determine the direction of transcription by antagonist-occupied steroid receptors. J Steroid Biochem Mol Biol 69:45–50

    Article  CAS  PubMed  Google Scholar 

  5. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  CAS  PubMed  Google Scholar 

  6. Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM (2000) Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci USA 97:9042–9046

    Article  CAS  PubMed  Google Scholar 

  7. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  8. Williams JA, Phillips DH (2000) Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Res 60:4667–4677

    CAS  PubMed  Google Scholar 

  9. Osborne CK, Wiebe VJ, McGuire WL, Ciocca DR, DeGregorio MW (1992) Tamoxifen and the isomers of 4-hydroxytamoxifen in tamoxifen-resistant tumors from breast cancer patients. J Clin Oncol 10:304–310

    CAS  PubMed  Google Scholar 

  10. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  CAS  PubMed  Google Scholar 

  11. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  12. Herman JG, Baylin SB (2003) Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349:2042–2054

    Article  CAS  PubMed  Google Scholar 

  13. Kang JH, Kim SJ, Noh DY, Park IA, Choe KJ, Yoo OJ, Kang HS (2001) Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Invest 81:573–579

    CAS  PubMed  Google Scholar 

  14. Kron K, Pethe V, Briollais L, Sadikovic B, Ozcelik H, Sunderji A, Venkateswaran V, Pinthus J, Fleshner N, van der Kwast T, Bapat B (2009) Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS ONE 4:e4830

    Article  PubMed  Google Scholar 

  15. Ji JW, Yang HL, Kim SJ (2006) Analysis of cag-8: a novel poly(Q)-encoding gene in the mouse brain. Biochem Biophys Res Commun 346:1254–1260

    Article  CAS  PubMed  Google Scholar 

  16. Jacobs TW, Gown AM, Yaziji H, Barnes MJ, Schnitt SJ (1999) Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. J Clin Oncol 17:1983–1987

    CAS  PubMed  Google Scholar 

  17. Dupret JM, Goodfellow GH, Janezic SA, Grant DM (1994) Structure-function studies of human arylamine N-acetyltransferases NAT1 and NAT2. Functional analysis of recombinant NAT1/NAT2 chimeras expressed in Escherichia coli. J Biol Chem 269:26830–26835

    CAS  PubMed  Google Scholar 

  18. Butcher NJ, Boukouvala S, Sim E, Minchin RF (2002) Pharmacogenetics of the arylamine N-acetyltransferases. Pharmacogenomics J 2:30–42

    Article  CAS  PubMed  Google Scholar 

  19. Minchin RF (1995) Acetylation of p-aminobenzoylglutamate, a folic acid catabolite, by recombinant human arylamine N-acetyltransferase and U937 cells. Biochem J 307(Pt 1):1–3

    CAS  PubMed  Google Scholar 

  20. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  21. Dolled-Filhart M, Ryden L, Cregger M, Jirstrom K, Harigopal M, Camp RL, Rimm DL (2006) Classification of breast cancer using genetic algorithms and tissue microarrays. Clin Cancer Res 12:6459–6468

    Article  CAS  PubMed  Google Scholar 

  22. Bieche I, Girault I, Urbain E, Tozlu S, Lidereau R (2004) Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor alpha-positive postmenopausal breast carcinoma. Breast Cancer Res 6:R252–R263

    Article  PubMed  Google Scholar 

  23. Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Weinshilboum RM, Fritcher EG, Nibbe AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101:113–121. doi:10.1007/s10549-006-9428-0

    Article  CAS  PubMed  Google Scholar 

  24. Nowell S, Sweeney C, Winters M, Stone A, Lang NP, Hutchins LF, Kadlubar FF, Ambrosone CB (2002) Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy. J Natl Cancer Inst 94:1635–1640

    CAS  PubMed  Google Scholar 

  25. Brockdorff BL, Skouv J, Reiter BE, Lykkesfeldt AE (2000) Increased expression of cytochrome p450 1A1 and 1B1 genes in anti-estrogen-resistant human breast cancer cell lines. Int J Cancer 88:902–906

    Article  CAS  PubMed  Google Scholar 

  26. Adam PJ, Berry J, Loader JA, Tyson KL, Craggs G, Smith P, De Belin J, Steers G, Pezzella F, Sachsenmeir KF, Stamps AC, Herath A, Sim E, O'Hare MJ, Harris AL, Terrett JA (2003) Arylamine N-acetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to etoposide in vitro. Mol Cancer Res 1:826–835

    CAS  PubMed  Google Scholar 

  27. Hui R, Finney GL, Carroll JS, Lee CS, Musgrove EA, Sutherland RL (2002) Constitutive overexpression of cyclin D1 but not cyclin E confers acute resistance to antiestrogens in T-47D breast cancer cells. Cancer Res 62:6916–6923

    CAS  PubMed  Google Scholar 

  28. Ishii Y, Waxman S, Germain D (2008) Tamoxifen stimulates the growth of cyclin D1-overexpressing breast cancer cells by promoting the activation of signal transducer and activator of transcription 3. Cancer Res 68:852–860

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

These studies were supported by a grant from the National Cancer Center, Korea.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Sung Kang.

Additional information

This work is supported by the National Cancer Center Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.J., Kang, HS., Jung, SY. et al. Methylation patterns of genes coding for drug-metabolizing enzymes in tamoxifen-resistant breast cancer tissues. J Mol Med 88, 1123–1131 (2010). https://doi.org/10.1007/s00109-010-0652-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0652-z

Keywords

Navigation