Skip to main content
Log in

Disease mutations in the “head” domain of the extra-sarcomeric protein desmin distinctly alter its assembly and network-forming properties

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The intermediate filament protein desmin generates an extra-sarcomeric network in myocytes. Mutations in the desmin gene cause myofibrillar myopathy characterized by desmin-positive aggregates and myofibrillar dissolution. Past analysis revealed that the non-α-helical amino-terminal “head” domain of desmin is a vital coordinator of protein assembly. We have now characterized assembly and network-forming properties of five recently discovered myopathy-causing mutations residing in this domain. In vitro analyses with recombinant proteins show that two mutant variants residing in a conserved nonapeptide motif “SSYRRTFGG”—Ser13Phe and Arg16Cys—interfere with assembly by forming filamentous aggregates. Consistent with in vitro data, both mutant proteins are unable to generate a bona fide filament system in cells lacking an intermediate filament cytoskeleton. In cells expressing vimentin or desmin, both mutants firstly fail to integrate into the endogenous filament network and secondly severely affect its cellular localization. The other three mutations—Ser2Iso, Ser46Phe, and Ser46Tyr—influence in vitro filament properties less severely, but in vivo, Ser46Phe and Ser46Tyr impair de novo filament formation. These effects of the “head” mutant proteins on endogenous intermediate filament system and their competition for binding to cellular anchoring structures might explain part of the molecular mechanism that causes disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S (2007) Muscle intermediate filaments and their links to membranes and membranous organelles. Exp Cell Res 313:2063–2076

    Article  CAS  PubMed  Google Scholar 

  2. Bär H, Strelkov SV, Sjöberg G, Aebi U, Herrmann H (2004) The biology of desmin filaments: how do mutations affect their structure, assembly, and organisation? J Struct Biol 148:137–152

    Article  PubMed  CAS  Google Scholar 

  3. Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8:562–573

    Article  CAS  PubMed  Google Scholar 

  4. Goldfarb LG, Vicart P, Goebel HH, Dalakas MC (2004) Desmin myopathy. Brain 127:723–734

    Article  CAS  PubMed  Google Scholar 

  5. Taylor MR, Slavov D, Ku L, Di Lenarda A, Sinagra G, Carniel E, Haubold K, Boucek MM, Ferguson D, Graw SL, Zhu X, Cavanaugh J, Sucharov CC, Long CS, Bristow MR, Lavori P, Mestroni L (2007) Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115:1244–1251

    Article  CAS  PubMed  Google Scholar 

  6. Herrmann H, Aebi U (1998) Structure, assembly, and dynamics of intermediate filaments. Subcell Biochem 31:319–362

    CAS  PubMed  Google Scholar 

  7. Pruszczyk P, Kostera-Pruszczyk A, Shatunov A, Goudeau B, Draminska A, Takeda K, Sambuughin N, Vicart P, Strelkov SV, Goldfarb LG, Kaminska A (2007) Restrictive cardiomyopathy with atrioventricular conduction block resulting from a desmin mutation. Int J Cardiol 117:244–253

    Article  PubMed  Google Scholar 

  8. Arbustini E, Pasotti M, Pilotto A, Pellegrini C, Grasso M, Previtali S, Repetto A, Bellini O, Azan G, Scaffino M, Campana C, Piccolo G, Vigano M, Tavazzi L (2006) Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail 8:477–483

    Article  CAS  PubMed  Google Scholar 

  9. Bär H, Goudeau B, Wälde S, Casteras-Simon M, Mücke N, Shatunov A, Goldberg YP, Clarke C, Holton JL, Eymard B, Katus HA, Fardeau M, Goldfarb L, Vicart P, Herrmann H (2007) Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies. Hum Mutat 28:374–386

    Article  PubMed  CAS  Google Scholar 

  10. Selcen D, Ohno K, Engel AG (2004) Myofibrillar myopathy: clinical, morphological and genetic studies in 63 patients. Brain 127:439–451

    Article  PubMed  Google Scholar 

  11. Bergman JE, Veenstra-Knol HE, van Essen AJ, van Ravenswaaij CM, den Dunnen WF, van den Wijngaard A, van Tintelen JP (2007) Two related Dutch families with a clinically variable presentation of cardioskeletal myopathy caused by a novel S13F mutation in the desmin gene. Eur J Med Genet 50:355–366

    Article  PubMed  Google Scholar 

  12. Pica EC, Kathirvel P, Pramono ZA, Lai PS, Yee WC (2008) Characterization of a novel S13F desmin mutation associated with desmin myopathy and heart block in a Chinese family. Neuromuscul Disord 18:178–182

    Article  PubMed  Google Scholar 

  13. Olive M, Armstrong J, Miralles F, Pou A, Fardeau M, Gonzalez L, Martinez F, Fischer D, Martinez Matos JA, Shatunov A, Goldfarb L, Ferrer I (2007) Phenotypic patterns of desminopathy associated with three novel mutations in the desmin gene. Neuromuscul Disord 17:443–450

    Article  PubMed  Google Scholar 

  14. Bär H, Mücke N, Kostareva A, Sjöberg G, Aebi U, Herrmann H (2005) Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages. Proc Natl Acad Sci U S A 102:15099–15104

    Article  PubMed  CAS  Google Scholar 

  15. Bär H, Kostareva A, Sjöberg G, Sejersen T, Katus HA, Herrmann H (2006) Forced expression of desmin and desmin mutants in cultured cells: impact of myopathic missense mutations in the central coiled-coil domain on network formation. Exp Cell Res 312:1554–1565

    Article  PubMed  CAS  Google Scholar 

  16. Herrmann H, Haner M, Brettel M, Müller SA, Goldie KN, Fedtke B, Lustig A, Franke WW, Aebi U (1996) Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. J Mol Biol 264:933–953

    Article  CAS  PubMed  Google Scholar 

  17. Beuttenmuller M, Chen M, Janetzko A, Kuhn S, Traub P (1994) Structural elements of the amino-terminal head domain of vimentin essential for intermediate filament formation in vivo and in vitro. Exp Cell Res 213:128–142

    Article  CAS  PubMed  Google Scholar 

  18. Schaffeld M, Herrmann H, Schultess J, Markl J (2001) Vimentin and desmin of a cartilaginous fish, the shark Scyliorhinus stellaris: sequence, expression patterns and in vitro assembly. Eur J Cell Biol 80:692–702

    Article  CAS  PubMed  Google Scholar 

  19. Granger BL, Lazarides E (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22:727–738

    Article  CAS  PubMed  Google Scholar 

  20. Wickert U, Mücke N, Wedig T, Muller SA, Aebi U, Herrmann H (2005) Characterization of the in vitro co-assembly process of the intermediate filament proteins vimentin and desmin: mixed polymers at all stages of assembly. Eur J Cell Biol 84:379–391

    Article  CAS  PubMed  Google Scholar 

  21. Mücke N, Wedig T, Burer A, Marekov LN, Steinert PM, Langowski J, Aebi U, Herrmann H (2004) Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 340:97–114

    Article  PubMed  CAS  Google Scholar 

  22. Herrmann H, Kreplak L, Aebi U (2004) Isolation, characterization, and in vitro assembly of intermediate filaments. Meth Cell Biol 78:3–24

    Article  CAS  Google Scholar 

  23. Bär H, Fischer D, Goudeau B, Kley RA, Clemen CS, Vicart P, Herrmann H, Vorgerd M, Schröder R (2005) Pathogenic effects of a novel heterozygous R350P desmin mutation on the assembly of desmin intermediate filaments in vivo and in vitro. Hum Mol Genet 14:1251–1260

    Article  PubMed  CAS  Google Scholar 

  24. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79:679–694

    Article  CAS  PubMed  Google Scholar 

  25. Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984

    Article  CAS  PubMed  Google Scholar 

  26. Parry DA, Steinert PM (1995) Intermediate filament structure. Springer, New York

    Google Scholar 

  27. Bär H, Mücke N, Ringler P, Müller SA, Kreplak L, Katus HA, Aebi U, Herrmann H (2006) Impact of disease mutations on the desmin filament assembly process. J Mol Biol 360:1031–1042

    Article  PubMed  CAS  Google Scholar 

  28. Herrmann H, Hofmann I, Franke WW (1992) Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J Mol Biol 223:637–650

    Article  CAS  PubMed  Google Scholar 

  29. Goldfarb L, Olive M, Vicart P, Goebel HH (2008) Intermediate filament diseases: desminopathy. Adv Exp Med Biol 642:131–164

    Article  PubMed  Google Scholar 

  30. Kaufmann E, Weber K, Geisler N (1985) Intermediate filament forming ability of desmin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues. J Mol Biol 185:733–742

    Article  CAS  PubMed  Google Scholar 

  31. Matsuzawa K, Kosako H, Azuma I, Inagaki N, Inagaki M (1998) Possible regulation of intermediate filament proteins by Rho-binding kinases. Subcell Biochem 31:423–435

    CAS  PubMed  Google Scholar 

  32. Parry DA (2005) Microdissection of the sequence and structure of intermediate filament chains. Adv Protein Chem 70:113–142

    Article  CAS  PubMed  Google Scholar 

  33. Kreplak L, Bär H (2009) Severe myopathy mutations modify the nanomechanics of desmin intermediate filaments. J Mol Biol 385:1043–1051

    Article  CAS  PubMed  Google Scholar 

  34. Clemen CS, Fischer D, Reimann J, Eichinger L, Müller CR, Müller HD, Goebel HH, Schröder R (2009) How much mutant protein is needed to cause a protein aggregate myopathy in vivo? Lessons from an exceptional desminopathy. Hum Mutat 30:E490–E499

    Article  PubMed  Google Scholar 

  35. Conover GM, Henderson SN, Gregorio CC (2009) A myopathy-linked desmin mutation perturbs striated muscle actin filament architecture. Mol Biol Cell 20:834–845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Harald Bär and Harald Herrmann acknowledge grants from the German Research Foundation (DFG; BA 2186/3-1 to H.B. and H.H.). Full-length cDNA of human LMNB1 cloned into the eukaryotic expression vector pEYFP-C1 was generously provided by Stephanie Geiger, DKFZ, Germany. The HL-1 cells were kindly provided by William C. Claycomb, Louisiana State University Medical Center, New Orleans, USA. We wish to thank Gloria Conover from Texas A&M University for critical reading of the manuscript.

Conflict of interest statement

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Bär.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Mücke, N., Katus, H.A. et al. Disease mutations in the “head” domain of the extra-sarcomeric protein desmin distinctly alter its assembly and network-forming properties. J Mol Med 87, 1207–1219 (2009). https://doi.org/10.1007/s00109-009-0521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0521-9

Keywords

Navigation