Skip to main content
Log in

The implications of fetal programming of glomerular number and renal function

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Large epidemiological studies suggest a clear relation between low birth weight and adverse renal outcomes evident as early as during childhood. Such adverse outcomes may include glomerular disease, hypertension, and renal failure. Data from autopsy material and from experimental models suggest that reduction in nephron number via diminished nephrogenesis may be a major mechanism, and factors that lead to this reduction are incompletely elucidated. Other mechanisms appear to be renal (e.g., via the intrarenal renin–angiotensin–aldosterone system) and nonrenal (e.g. changes in endothelial function). It also appears likely that the outcomes of fetal programming may be influenced postnatally, for example, by the amount of nutrients given at critical times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lackland DT, Egan BM, Fan ZJ, Syddall HE (2001) Low birth weight contributes to the excess prevalence of end-stage renal disease in African Americans. J Clin Hypertens 3:29–31

    Article  CAS  Google Scholar 

  2. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19:151–157

    Article  PubMed  Google Scholar 

  3. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472–1476

    Article  PubMed  CAS  Google Scholar 

  4. Li S, Chen SC, Shlipak M, Bakris G, McCullough PA, Sowers J, Stevens L, Jurkovitz C, McFarlane S, Norris K, Vassalotti J, Klag MJ, Brown WW, Narva A, Calhoun D, Johnson B, Obialo C, Whaley-Connell A, Becker B, Collins AJ, Kidney Early Evaluation Program Investigators (2008) Low birth weight is associated with chronic kidney disease only in men. Kidney Int 73:637–642

    Article  PubMed  CAS  Google Scholar 

  5. Hallan S, Euser AM, Irgens LM, Finken MJ, Holmen J, Dekker FW (2008) Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trøndelag Health [HUNT 2] Study. Am J Kidney Dis 51:10–20

    Article  PubMed  Google Scholar 

  6. López-Bermejo A, Sitjar C, Cabacas A, Vázquez-Ruíz M, García-González MM, Mora C, Soriano P, Calvo M, Ibáñez L (2008) Prenatal programming of renal function: the estimated glomerular filtration rate is influenced by size at birth in apparently healthy children. Pediatr Res 64:97–99

    Article  PubMed  Google Scholar 

  7. Franco MC, Nishida SK, Sesso R (2008) GFR estimated from cystatin C versus creatinine in children born small for gestational age. Am J Kidney Dis 51:925–932

    Article  PubMed  CAS  Google Scholar 

  8. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54(2):248–261

    Article  PubMed  Google Scholar 

  9. Dötsch J, Dittrich K, Plank C, Rascher W (2006) Is tacrolimus for childhood steroid-dependent nephrotic syndrome better than ciclosporin A? Nephrol Dial Transplant 21:1761–1763

    Article  PubMed  Google Scholar 

  10. Sheu JN, Chen JH (2001) Minimal change nephrotic syndrome in children with intrauterine growth retardation. Am J Kidney Dis 37:909–914

    Article  PubMed  CAS  Google Scholar 

  11. Zidar N, Avgustin Cavic M, Kenda RB, Ferluga D (1998) Unfavorable course of minimal change nephrotic syndrome in children with intrauterine growth retardation. Kidney Int 54:1320–1323

    Article  PubMed  CAS  Google Scholar 

  12. Plank C, Östreicher I, Rascher W, Dötsch J (2007) Born SGA, but not postnatal weight gain aggravates the course of nephrotic syndrome in children. Pediatr Nephrol 22:1881–1889

    Article  PubMed  Google Scholar 

  13. Teeninga N, Schreuder MF, Bökenkamp A, de Waal HA Delemarre-van, van Wijk JA (2008) Influence of low birth weight on minimal change nephrotic syndrome in children, including a meta-analysis. Nephrol Dial Transplant 23:1615–1620

    Article  PubMed  Google Scholar 

  14. Goldstein AR, White RH, Akuse R, Chantler C (1992) Long-term follow-up of childhood Henoch–Schönlein nephritis. Lancet 339:280–282

    Article  PubMed  CAS  Google Scholar 

  15. Zidar N, Cavic MA, Kenda RB et al (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28–32

    Article  PubMed  CAS  Google Scholar 

  16. Herrera J, Rodríguez-Iturbe B (2003) End-stage renal disease and acute glomerulonephritis in Goajiro Indians. Kidney Int Suppl (83):S22–S26

  17. Naito-Yoshida Y, Hida M, Maruyama Y, Hori N, Awazu M (2005) Poststreptococcal acute glomerulonephritis superimposed on bilateral renal hypoplasia. Clin Nephrol 63:477–480

    PubMed  CAS  Google Scholar 

  18. Winberg J (2001) Does low birthweight facilitate postinfectious focal renal scarring? Acta Paediatr 90:835–836

    Article  PubMed  CAS  Google Scholar 

  19. Hellström J, Hessel H, Jacobsson B, Jodal U, Niklasson A, Wennerström M et al (2001) Association between urinary tract infection, renal damage and birth size. Acta Paediatr 90:628–631

    Article  PubMed  Google Scholar 

  20. Stoffers DA, Desai BM, DeLeon DD, Simmons RA (2003) Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes 52:734–740

    Article  PubMed  CAS  Google Scholar 

  21. Nüsken KD, Dötsch J, Rauh M, Rascher W, Schneider H (2008) Uteroplacental insufficiency after bilateral uterine artery ligation in the rat: impact on postnatal glucose and lipid metabolism and evidence for metabolic programming of the offspring by sham operation. Endocrinology 149:1056–1063

    Article  PubMed  CAS  Google Scholar 

  22. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467

    Article  PubMed  CAS  Google Scholar 

  23. Elmes MJ, Gardner DS, Langley-Evans SC (2007) Fetal exposure to a maternal low-protein diet is associated with altered left ventricular pressure response to ischemia–reperfusion injury. Br J Nutr 98:93–100

    Article  PubMed  CAS  Google Scholar 

  24. Plank C, Östreicher I, Hartner A, Marek I, Struwe FG, Amann K, Hilgers KF, Rascher W, Dötsch J (2006) Intrauterine growth retardation aggravates the course of acute mesangioproliferative glomerulonephritis in the rat. Kidney Int 70:1974–1982

    PubMed  CAS  Google Scholar 

  25. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74:187–195

    Article  PubMed  Google Scholar 

  26. Langley-Evans SC (2009) Nutritional programming of disease: unravelling the mechanism. J Anat 215:36–51

    Article  PubMed  Google Scholar 

  27. Nuyt AM (2008) Mechanisms underlying developmental programming of elevated blood pressure and vascular dysfunction: evidence from human studies and experimental animal models. Clin Sci (Lond) 114:1–17

    Article  CAS  Google Scholar 

  28. Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    PubMed  CAS  Google Scholar 

  29. Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Article  PubMed  Google Scholar 

  30. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348

    Article  PubMed  Google Scholar 

  31. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure: less of one, more of the other? Am J Hypertens 1:335–347

    PubMed  CAS  Google Scholar 

  32. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  33. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69:671–678

    Article  PubMed  CAS  Google Scholar 

  34. Kuure S, Vuolteenaho R, Vainio S (2000) Kidney morphogenesis: cellular and molecular regulation. Mech Dev 92:31–45

    Article  PubMed  CAS  Google Scholar 

  35. Ingelfinger JR (2003) Is microanatomy destiny? N Engl J Med 348:99–100

    Article  PubMed  Google Scholar 

  36. Cullen-McEwen LA, Kett MM, Dowling J, Anderson WP, Bertram JF (2003) Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension 41:335–340

    Article  PubMed  CAS  Google Scholar 

  37. Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034

    Article  PubMed  CAS  Google Scholar 

  39. Zhang Z, Quinlan J, Grote D, Lemire M, Hudson T, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bouchard M, Goodyer P (2009) Common variants of the glial cell-derived neurotrophic factor gene do not influence kidney size of the healthy newborn. Pediatr Nephrol (in press)

  40. Schreuder MF, Nauta J (2007) Prenatal programming of nephron number and blood pressure. Kidney Int 72:265–268

    Article  PubMed  CAS  Google Scholar 

  41. Koleganova N, Piecha G, Ritz E (2009) Prenatal causes of kidney disease. Blood Purif 27:48–52

    Article  PubMed  CAS  Google Scholar 

  42. Hughson M, Farris AB 3 rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birthweight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  43. Fogo A, Ichikawa I (1991) Evidence for a pathogenetic link between glomerular hypertrophy and sclerosis. Am J Kidney Dis 17:666–669

    PubMed  CAS  Google Scholar 

  44. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    Article  PubMed  CAS  Google Scholar 

  45. Moritz KM, Wintour EM, Dodic M (2002) Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertension 39:1071–1076

    Article  PubMed  CAS  Google Scholar 

  46. Argueso LR, Ritchey ML, Boyle ET Jr, Milliner DS, Bergstralh EJ, Kramer SA (1992) Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 6:412–416

    Article  PubMed  CAS  Google Scholar 

  47. Brenner BM, Milford EL (1993) Nephron underdosing: a programmed cause of chronic renal allograft failure. Am J Kidney Dis 21(5 Suppl 2):66–72

    PubMed  CAS  Google Scholar 

  48. Douverny JB, Baptista-Silva JC, Pestana JO, Sesso R (2007) Importance of renal mass on graft function outcome after 12 months of living donor kidney transplantation. Nephrol Dial Transplant 22:3646–3651

    Article  PubMed  Google Scholar 

  49. Mei-Zahav M, Korzets Z, Cohen I, Kessler O, Rathaus V, Wolach B, Pomeranz A (2001) Ambulatory blood pressure monitoring in children with a solitary kidney—a comparison between unilateral renal agenesis and uninephrectomy. Blood Press Monit 6:263

    Article  PubMed  CAS  Google Scholar 

  50. Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook H, Yang RC, Rosas-Arellano MP, Housawi A, Garg AX (2006) Donor Nephrectomy Outcomes Research (DONOR) Network. Meta-analysis: risk for hypertension in living kidney donors. Ann Intern Med 145:185–196

    PubMed  Google Scholar 

  51. Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA (1999) Intrauterine programming of hypertension: the role of the renin–angiotensin system. Biochem Soc Trans 27:88–93

    PubMed  CAS  Google Scholar 

  52. Sahajpal V, Ashton N (2003) Renal function and angiotensin AT1 receptor expression in young rats following intrauterine exposure to a maternal low-protein diet. Clin Sci (Lond) 104:607–614

    CAS  Google Scholar 

  53. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin–angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526

    Article  PubMed  CAS  Google Scholar 

  54. Simonetti GD, Raio L, Surbek D, Nelle M, Frey FJ, Mohaupt MG (2008) Salt sensitivity of children with low birth weight. Hypertension 52:625–630

    Article  PubMed  CAS  Google Scholar 

  55. Seckl JR, Meaney MJ (2004) Glucocorticoid programming. Ann N Y Acad Sci 1032:63–84

    Article  PubMed  CAS  Google Scholar 

  56. Bertram C, Trowern AR, Copin N, Jackson AA, Whorwood CB (2001) The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology 142:2841–2853

    Article  PubMed  CAS  Google Scholar 

  57. Schoof E, Girstl M, Frobenius W, Kirschbaum M, Dörr HG, Rascher W, Dötsch J (2001) Reduced placental gene expression of 11ß hydroxysteroid dehydogenase type 2 and 15-hydrodroxy prostaglandin dehydrogenase in patients with preeclampsia J. Clin Endocrinol Metab 86:1313–1317

    Article  CAS  Google Scholar 

  58. Struwe E, Berzl D, Schild RL, Beckmann MW, Dörr HG, Rascher W, Dötsch J (2007) Simultaneously reduced gene expression of cortisol-activating and cortisol-inactivating enzymes in placentas of small-for-gestational-age neonates. Am J Obstet Gynecol 197:43.e1–43.e6

    Article  CAS  Google Scholar 

  59. Martin H, Gazelius B, Norman M (2000) Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr Res 47:457–462

    Article  PubMed  CAS  Google Scholar 

  60. Franco MC, Christofalo DM, Sawaya AL, Ajzen SA, Sesso R (2006) Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48:45–50

    Article  PubMed  CAS  Google Scholar 

  61. Martin H, Hu J, Gennser G, Norman M (2000) Impaired endothelial function and increased carotid stiffness in 9-year-old children with low birth weight. Circulation 28(102):2739–2744

    Google Scholar 

  62. Phillips DI, Barker DJ (1997) Association between low birth weight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med 14:673–677

    Article  PubMed  CAS  Google Scholar 

  63. Alexander BT, Hendon AE, Ferril G, Dwyer TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45:754–758

    Article  PubMed  CAS  Google Scholar 

  64. Ravelli AC, van der Meulen JH, Michels RP, Osmond C, Barker DJ, Hales CN, Bleker OP (1998) Glucose tolerance in adults after prenatal exposure to famine. Lancet 351:173–177

    Article  PubMed  CAS  Google Scholar 

  65. Stanner SA, Yudkin JS (2001) Fetal programming and the Leningrad Siege study. Twin Res 4:287–292

    Article  PubMed  CAS  Google Scholar 

  66. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  PubMed  CAS  Google Scholar 

  67. Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A (2007) Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab 92:804–810

    Article  PubMed  CAS  Google Scholar 

  68. Singhal A, Cole TJ, Fewtrell M, Kennedy K, Stephenson T, Elias-Jones A, Lucas A (2007) Promotion of faster weight gain in infants born small for gestational age: is there an adverse effect on later blood pressure? Circulation 115:213–220

    Article  PubMed  Google Scholar 

  69. Ben-Shlomo Y, McCarthy A, Hughes R, Tilling K, Davies D, Davey Smith G (2008) Immediate postnatal growth is associated with blood pressure in young adulthood: the Barry Caerphilly Growth Study. Hypertension 52:638–644

    Article  PubMed  CAS  Google Scholar 

  70. Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn, Germany; Sonderforschungsbereich 423. The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Dötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dötsch, J., Plank, C., Amann, K. et al. The implications of fetal programming of glomerular number and renal function. J Mol Med 87, 841–848 (2009). https://doi.org/10.1007/s00109-009-0507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0507-7

Keywords

Navigation