Skip to main content
Log in

Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

A Publisher´s Erratum to this article was published on 22 May 2007

Abstract

In animal models of cachexia, alterations in the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway have been demonstrated in atrophying skeletal muscles. Therefore, we assessed the activity of proteins in this pathway in muscle and liver biopsies from 16 patients undergoing pancreatectomy for suspect of carcinoma. Patients were divided in a non-cachectic or cachectic group according to their weight loss before operation. Extracts of skeletal muscle and liver tissue from eight cachectic patients with pancreas carcinoma and eight non-cachectic patients were analysed by Western blotting using pan- and phospho-specific antibodies directed against eight important signal transduction proteins of the PI3-K/Akt pathway. Muscle samples from cachectic patients revealed significantly decreased levels of myosin heavy chain (−45%) and actin (−18%) in comparison to non-cachectic samples. Akt protein level was decreased by −55%. The abundance and/or phosphorylation of the transcription factors Foxo1 and Foxo3a were reduced by up to fourfold in muscle biopsies from cachectic patients. Various decreases of the phosphorylated forms of the protein kinases mTOR (−82%) and p70S6K (−39%) were found. In contrast to skeletal muscle, cachexia is associated with a significant increase in phosphorylated Akt level in the liver samples with a general activation of the PI3-K/Akt cascade. Our study demonstrates a cachexia-associated loss of Akt-dependent signalling in human skeletal muscle with decreased activity of regulators of protein synthesis and a disinhibition of protein degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IR:

insulin receptor

IRS1:

insulin receptor substrate 1

MyHC:

myosin heavy chain

PAA:

polyacrylamide

PI3-K:

phosphatidylinositol 3-kinase

SDS:

sodium dodecyl sulphate

References

  1. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  CAS  Google Scholar 

  2. Fearon KC, Barber MD, Falconer JS, McMillan DC, Ross JA, Preston T (1999) Pancreatic cancer as a model: inflammatory mediators, acute-phase response, and cancer cachexia. World J Surg 23:584–588

    Article  PubMed  CAS  Google Scholar 

  3. Argiles JM, Busquets S, Lopez-Soriano FJ (2001) Metabolic interrelationships between liver and skeletal muscle in pathological states. Life Sci 69:1345–1361

    Article  PubMed  CAS  Google Scholar 

  4. Todorov PT, Deacon M, Tisdale MJ (1997) Structural analysis of a tumor-produced sulfated glycoprotein capable of initiating muscle protein degradation. J Biol Chem 272:12279–12288

    Article  PubMed  CAS  Google Scholar 

  5. Hirai K, Hussey HJ, Barber MD, Price SA, Tisdale MJ (1998) Biological evaluation of a lipid-mobilizing factor isolated from the urine of cancer patients. Cancer Res 58:2359–2365

    PubMed  CAS  Google Scholar 

  6. Strassmann G, Fong M, Kenney JS, Jacob CO (1992) Evidence for the involvement of interleukin 6 in experimental cancer cachexia. J Clin Invest 89:1681–1684

    Article  PubMed  CAS  Google Scholar 

  7. Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Cell 50:555–563

    Article  PubMed  CAS  Google Scholar 

  8. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  PubMed  CAS  Google Scholar 

  9. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  10. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    Article  PubMed  CAS  Google Scholar 

  11. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5:87–90

    Article  PubMed  CAS  Google Scholar 

  12. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline W, Gonzalez M, Yancopoulos G, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  13. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg A (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412

    Article  PubMed  CAS  Google Scholar 

  14. Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445

    Article  PubMed  CAS  Google Scholar 

  15. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1708

    Article  PubMed  CAS  Google Scholar 

  16. Jagoe RT, Goldberg AL (2001) What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr Poin Clin Nutr Metab Care 4:183–190

    Article  CAS  Google Scholar 

  17. Williams A, Sun X, Fischer JE, Hasselgren PO (1999) The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery 126:744–749

    PubMed  CAS  Google Scholar 

  18. Bossola M, Muscaritoli M, Cotelli P, Bellantone R, Pacelli F, Busquets S, Argiles JM, Lopez-Soriano FJ, Civello IM, Baccino FM, Fanelli FS, Doglietto GB (2001) Increased muscle ubiquitin mRNA levels in gastric cancer patients. Am J Physiol Regul Integr Comp Physiol 280:R1518–R1523

    PubMed  CAS  Google Scholar 

  19. Schwartz-Albiez R, Merling A, Spring H, Moller P, Koretz K (1995) Differential expression of the microspike-associated protein moesin in human tissues. Eur J Cell Biol 67:189–198

    PubMed  CAS  Google Scholar 

  20. Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, Guttridge D (2004) Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378

    Article  PubMed  CAS  Google Scholar 

  21. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 89:2363–2366

    Article  Google Scholar 

  22. Du J, Wang X, Miereles C, Bailey J, Debigare R, Zheng B, Price SR, Mitch W (2004) Activation of caspase-3 is an initial Stepp triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Knezetic J, Strömmer L, Permert J, Larsson J, Adrian T (2000) The intracellular mechanism of insulin resistance in pancreatic cancer patients. J Clin Endocrinol Metabol 85:1232–1238

    Article  CAS  Google Scholar 

  24. Isaksson B, Strömmer L, Friess H, Buchler MW, Herrington MK, Wang F, Zierath JR, Wallberg-Henriksson H, Larsson J, Permert J (2003) Impaired insulin action on phosphatidylinositol 3-kinase activity and glucose transport in skeletal muscle of pancreatic cancer patients. Pancreas 26:173–177

    Article  PubMed  CAS  Google Scholar 

  25. Hill MM, Andjelkovic M, Brazil DP, Ferrari S, Fabbro D, Hemmings BA (2001) Insulin-stimulated protein kinase B phosphorylation on Ser-473 is independent of its activity and occurs through a staurosporine-insensitive kinase. J Biol Chem 276:25643–25646

    Article  PubMed  CAS  Google Scholar 

  26. Woods YL, Rena G (2002) Effect of multiple phosphorylation events on the transcription factors FKHR, FKHRL1 and AFX. Biochem Soc Trans 30:391–397

    Article  PubMed  CAS  Google Scholar 

  27. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  PubMed  CAS  Google Scholar 

  28. Gomez-Gutierrez JG, Souza V, Hao HY, Montes de Oca-Luna R, Dong YB, Zhou HS, McMasters KM (2006) Adenovirus-mediated gene transfer of FKHRL1 triple mutant efficiently induce apoptosis in melanoma cells. Cancer Biol Ther 5:875–883

    Article  PubMed  CAS  Google Scholar 

  29. Hu MC, Lee DF, Xia W, Golfman LS, Ou-Chang F, Yang JY, Zou Y, Bao S, Hanada N, Saso H, Kobayashi R, Hung MC (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead Foxo3a. Cell 117:225–237

    Article  PubMed  CAS  Google Scholar 

  30. Manning BD (2004) Balancing Akt with S6K: implications for both metabolic disease and tumorigenesis. J Cell Biol 167:399–403

    Article  PubMed  CAS  Google Scholar 

  31. Hack V, Gross A, Kinscherf R, Bockstette M, Fiers W, Berke G, Droge W (1996) Abnormal glutathione and sulfate levels after interleukin 6 treatment and in tumor-induced cachexia. FASEB J 10:1219–1226

    PubMed  CAS  Google Scholar 

  32. Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ (2004) Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the technical assistance of Mrs. A. Ott-Hartmann and N. Erbe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Schmitt.

Additional information

Thomas L. Schmitt and Marcus E. Martignoni contributed equally to the paper.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00109-007-0206-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, T.L., Martignoni, M.E., Bachmann, J. et al. Activity of the Akt-dependent anabolic and catabolic pathways in muscle and liver samples in cancer-related cachexia. J Mol Med 85, 647–654 (2007). https://doi.org/10.1007/s00109-007-0177-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0177-2

Keywords

Navigation