Skip to main content

Advertisement

Log in

Interactive effect of the glutathione S-transferase genes and cigarette smoking on occurrence and severity of coronary artery risk

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cardiovascular diseases and cancer are the main causes of death in developed countries. Mortality trends for these diseases suggest that they share common pathogenetic mechanisms. Glutathione S-transferase (GST) is a family of enzymes that detoxify reactive electrophiles, particularly present in tobacco smoke. Glutathione S-transferase null M1 and T1 (GSTM1 and GSTT1) genotypes have often been associated with increased risk of developing cancer. Our hypothesis was that the polymorphic GSTM1 and GSTT1 genes modulate the risk of smoking-coronary artery disease (CAD). We evaluated the distribution of GST genotypes in 430 angiographically defined patients (308 CAD and 122 non-CAD). The frequencies of GST null genotypes did not differ significantly between patients with CAD and without CAD. However, smokers with GSTM1 and GSTT1 null genotypes had a significantly higher risk of CAD than never-smokers with these genotypes present (OR 2.2 and 3.4 for smokers with null GSTM1 and GSTT1 genes, respectively). There was also evidence of multiple interaction between GSTM1 and GSTT1 deleted genotypes and smoking. In nonsmokers carrying both null genotypes the risk of CAD was 0.66. In smokers with both present genotypes the OR was 1.5 and was significantly increased in smokers with concurrent lack for GSTM1 and GSTT1 genes (OR=4.0). Moreover, smokers lacking GST genes had both more stenosed vessels and a higher Duke score than smokers expressing the genes. We also examined the levels of DNA damage in 66 men patients using the micronucleus test, a sensitive assay for evaluating chromosome damage. Micronucleus levels were higher in smokers with null genes than in smokers with present genes. These observations suggest that GST-null genotypes strengthen the effect of smoking on CAD risk by modulating the detoxification of genotoxic atherogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Abbreviations

CAD :

Coronary artery disease

CI :

Confidence interval

GST :

Glutathione S-transferase

MN :

Micronucleus

OR :

Odds ratios

References

  1. De Flora S, Izzotti A, Randerath K, Randerath E, Bartsch H, Nair J, Balansky R, van Schooten F, Degan P, Fronza G, Walsh D, Lewtas J (1996) DNA adducts and chronic degenerative disease. Pathogenetic relevance and implications in preventive medicine. Mutat Res 366:197–238

    PubMed  Google Scholar 

  2. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS (2001) Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann NY Acad Sci 947:271–292

    CAS  Google Scholar 

  3. Andreassi MG (2003) Coronary atherosclerosis and somatic mutations: an overview of the contributive factors for oxidative DNA damage. Mutat Res 543:67–86

    Article  CAS  PubMed  Google Scholar 

  4. De Flora S, Izzotti A, Walsh A, Degan P, Petrilli GL, Lewtas J (1997) Molecular epidemiology of atherosclerosis. FASEB J 11:1021–1031

    PubMed  Google Scholar 

  5. Manfredi S, Masetti S, Botto N, Colombo MG, Terrazzi M, Vassalle C, Biagini A, Andreassi MG (2002) p53 codon 72 polymorphism in coronary artery disease: no evidence for association with increased risk and micronucleus frequency. Environ Mol Mutagen 40:110–115

    Article  CAS  PubMed  Google Scholar 

  6. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106:927–932

    Article  CAS  PubMed  Google Scholar 

  7. Binkova B, Smerhovsky Z, Strejc P, Boubelik O, Stavkova Z, Chvatalova I, Sram RJ (2002) DNA-adducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res 501:15–28

    Google Scholar 

  8. Andreassi MG, Botto N, Rizza A, Colombo MG, Palmieri C, Berti S, Manfredi S, Masetti S, Clerico A, Biagini A (2002) Deoxyribonucleic acid damage in human lymphocytes after percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 40:862–868

    Article  CAS  Google Scholar 

  9. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600

    CAS  PubMed  Google Scholar 

  10. Ketterer B, Christodoulides LG (1994) Enzymology of cytosolic glutathione S-transferases. Adv Pharmacol 27:37–69

    CAS  PubMed  Google Scholar 

  11. Seidegard J, Vorachek WR, Pero, RW Pearson WR (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85:7293–7297

    CAS  PubMed  Google Scholar 

  12. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276

    CAS  PubMed  Google Scholar 

  13. Rebbeck TR (1997) Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 6:733–743

    CAS  PubMed  Google Scholar 

  14. Wiencke JK, Kelsey KT, Lamela RA, Toscano WA Jr (1990) Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res 50:1585–1590

    CAS  PubMed  Google Scholar 

  15. Salagovic J, Kalina I, Stubna J, Habalova V, Hrivnak M, Valansky L, Kohut A, Biros E (1998) Genetic polymorphism of glutathione S-transferases M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 45:312–317

    CAS  PubMed  Google Scholar 

  16. Saadat I, Saadat M (2001) Glutathione S-transferase M1 and T1 null genotypes and the risk of gastric and colorectal cancers. Cancer Lett 169:21–26

    Article  CAS  PubMed  Google Scholar 

  17. Lee SJ, Cho SH, Park SK, Kim SW, Park MS, Choi HY, Choi JY, Lee SY, Im HJ, Kim JY, Yoon KJ, Choi H, Shin SG, Park TW, Rothman N, Hirvonen A, Kang D (2002) Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 28:173–179

    Article  Google Scholar 

  18. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44

    CAS  PubMed  Google Scholar 

  19. Smith LR, Harrell FE Jr, Rankin JS, Califf RM, Pryor DB, Muhlbaier LH, Lee KL, Mark DB, Jones RH, Oldham HN (1991) Determinants of early versus late cardiac death in patients undergoing coronary artery bypass graft surgery. Circulation 84 [Suppl III]:III245–III253

  20. Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK (1993) Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14:1821–1824

    CAS  PubMed  Google Scholar 

  21. To-Figueras J, Gene M, Gomez-Catalan J, Galan MC, Fuentes M, Ramon JM, Rodamilans M, Huguet E, Corbella J (1997) Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) polymorphisms and lung cancer risk among Northwestern Mediterraneans. Carcinogenesis 18:1529–1533

    Article  CAS  PubMed  Google Scholar 

  22. Li R, Boerwinkle E, Olshan AF, Chambless LE, Pankow JS, Tyroler HA, Bray M, Pittman GS, Bell DA, Heiss G (2000) Glutathione S-transferase genotype as a susceptibility factor in smoking-related coronary heart disease. Atherosclerosis 149:451–462

    Article  CAS  PubMed  Google Scholar 

  23. Wilson MH, Grant PJ, Hardie LJ, Wild CP (2000) Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB J 14:791–796

    CAS  PubMed  Google Scholar 

  24. Waart FG de, Kok FJ, Smilde TJ, Hijmans A, Wollersheim H, Stalenhoef AF (2001) Effect of glutathione S-transferase M1 genotype on progression of atherosclerosis in lifelong male smokers. Atherosclerosis 158:227–231

    Article  PubMed  Google Scholar 

  25. Wang XL, Greco M, Sim AS, Duarte N, Wang J, Wilcken DE (2002) Glutathione S-transferase mu1 deficiency, cigarette smoking and coronary artery disease. J Cardiovasc Risk 9:25–31

    Article  CAS  PubMed  Google Scholar 

  26. Li R, Folsom AR, Sharrett AR, Couper D, Bray M, Tyroler HA (2001) Interaction of the glutathione S-transferase genes and cigarette smoking on risk of lower extremity arterial disease: the Atherosclerosis Risk in Communities (ARIC) study. Atherosclerosis 154:729–738

    Article  CAS  PubMed  Google Scholar 

  27. Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 463:247–283

    CAS  PubMed  Google Scholar 

  28. Norppa H (1997) Cytogenetic markers of susceptibility: influence of polymorphic carcinogen-metabolizing enzymes. Environ Health Perspect 105:829–835

    CAS  PubMed  Google Scholar 

  29. Dusinska M, Ficek A, Horska A, Raslova K, Petrovska H, Vallova B, Drlickova M, Wood SG, Stupakova A, Gasparovic J, Bobek P, Nagyova A, Kovacikova Z, Blazicek P, Liegebel U, Collins AR (2001) Glutathione S-transferase polymorphisms influence the level of oxidative DNA damage and antioxidant protection in humans. Mutat Res 482:47–55

    CAS  PubMed  Google Scholar 

  30. Izzotti A, Cartiglia C, Lewtas J, De Flora S (2001) Increased DNA alterations in atherosclerotic lesions of individuals lacking the GSTM1 genotype. FASEB J 15:752–757

    Article  CAS  PubMed  Google Scholar 

  31. Salama SA, Au WW, Hunter GC, Sheahan RG, Badary OA, Abdel-Naim AB, Hamada FM (2002) Polymorphic metabolizing genes and susceptibility to atherosclerosis among cigarette smokers. Environ Mol Mutagen 40:153–160

    Article  CAS  PubMed  Google Scholar 

  32. Benditt EP, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaque. Proc Natl Acad Sci USA 70:1753–1756

    CAS  PubMed  Google Scholar 

  33. Yarnell JW (1996) Smoking and cardiovascular disease. Q J Med 89:493–498

    CAS  Google Scholar 

  34. Shields PG (2000) Epidemiology of tobacco carcinogenesis. Curr Oncol Rep 2:257–262

    CAS  PubMed  Google Scholar 

  35. Dreyer L, Olsen JH (1998) Cancer risk of patients discharged with acute myocardial infarct. Epidemiology 9:178–183

    CAS  PubMed  Google Scholar 

  36. Reicher-Reiss H, Jonas M, Goldbourt U, Boyko V, Modan B (2001) Selectively increased risk of cancer in men with coronary heart disease. Am J Cardiol 15:459–462

    Article  Google Scholar 

  37. Penn A, Snyolez CA (1993) Inhalation of sidestream cigarette smoke allelezotes development of atherosclerotic plaques. Circulation 88:1820–1825

  38. Penn A, Chen LC, Snyolez CA (1994) Inhalation of steady-state sidestream smoke from one cigarette promotes plaque development. Circulation 90:1363–1367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Andreassi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masetti, S., Botto, N., Manfredi, S. et al. Interactive effect of the glutathione S-transferase genes and cigarette smoking on occurrence and severity of coronary artery risk. J Mol Med 81, 488–494 (2003). https://doi.org/10.1007/s00109-003-0448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0448-5

Keywords

Navigation