Skip to main content
Log in

Neuromonitoring in der Intensivmedizin mit S-100 Protein

Neuromonitoring with S-100 protein in the intensive care unit

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Der Einsatz von neurobiochemischen Markern, wie S-100 Protein, zur Diagnose und Prognose von akuten neurologischen Krankheitsbildern ist in den letzten Jahren Gegenstand intensiver experimenteller und klinischer Untersuchungen gewesen. Der vorliegende Artikel gibt einen Überblick über den aktuellen Stand der Forschung, die biochemischen Eigenschaften, die klinischen Einsatzmöglichkeiten und die Limitationen von S-100 Protein in Bezug auf die akuten neurologischen Erkrankungen, die dem Intensivmediziner am häufigsten begegnen.

Abstract

During the last years biochemical neuromonitoring with various molecules such as S-100 protein has become popular. A huge number of investigations both experimental and clinical have been undertaken to determine diagnosis and prognosis of patients with acute neurologic diseases. This article gives a review on the current knowledge, indications and limitations on the use of S-100 protein with regard to most of the acute neurological diseases an intensivist is confronted with in everyday practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Abraha HD, Butterworth RJ, Bath PM, Wassif WS, Garthwaite J, Sherwood RA (1997) Serum S-100 protein, relationship to clinical outcome in acute stroke. Ann Clin Biochem 34:366–370

    PubMed  Google Scholar 

  2. Allore R, O’Hanlon D, Price R et al. (1988) Gene encoding the beta subunit of S100 protein is on chromosome 21: implications for Down syndrome. Science 239:1311–1313

    CAS  PubMed  Google Scholar 

  3. Anderson RE, Hansson LO, Liska J, Settergren G, Vaage J (2000) The effect of cardiotomy suction on the brain injury marker S100beta after cardiopulmonary bypass. Ann Thorac Surg 69:847–850

    Article  CAS  PubMed  Google Scholar 

  4. Arrowsmith JE, Grocott HP, Reves JG, Newman MF (2000) Central nervous system complications of cardiac surgery. Br J Anaesth 84:378–393

    CAS  PubMed  Google Scholar 

  5. Astudillo R, Linden J van der, Radegran K, Hansson LO, Aberg B (1996) Elevated serum levels of S-100 after deep hypothermic arrest correlate with duration of circulatory arrest. Eur J Cardiothorac Surg 10:1107–1112

    CAS  PubMed  Google Scholar 

  6. Bertsch T, Casarin W, Kretschmar M et al. (2001) Protein S-100B: a serum marker for ischemic and infectious injury of cerebral tissue. Clin Chem Lab Med 39:319–323

    CAS  PubMed  Google Scholar 

  7. Böttiger BW, Mobes S, Glatzer R et al. (2001) Astroglial protein S-100 is an early and sensitive marker of hypoxic brain damage and outcome after cardiac arrest in humans. Circulation 103:2694–2698

    PubMed  Google Scholar 

  8. Büttner T, Weyers S, Postert T, Sprengelmeyer R, Kuhn W (1997) S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 28:1961–1965

    PubMed  Google Scholar 

  9. Donato R (1999) Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1450:191–231

    Article  CAS  PubMed  Google Scholar 

  10. Ehrenreich H, Hasselblatt M, Dembowski C et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    CAS  PubMed  Google Scholar 

  11. Elting JW, Jager AE de, Teelken AW et al. (2000) Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci 181:104–110

    Google Scholar 

  12. Fano G, Biocca S, Fulle S, Mariggio MA, Belia S, Calissano P (1995) The S-100: a protein family in search of a function. Prog Neurobiol 46:71–82

    Article  CAS  PubMed  Google Scholar 

  13. Fassbender K, Schmidt R, Schreiner A, Fatar M, Muhlhauser F, Daffertshofer M, Hennerici M (1997) Leakage of brain-originated proteins in peripheral blood: temporal profile and diagnostic value in early ischemic stroke. J Neurol Sci 148:101–105

    Article  CAS  PubMed  Google Scholar 

  14. Fries M, Kunz D, Gressner AM, Rossaint R, Kuhlen R (2003) Procalcitonin serum levels after out-of-hospital cardiac arrest. Resuscitation 59:105–109

    Article  CAS  PubMed  Google Scholar 

  15. Gao F, Harris DN, Sapsed-Byrne S, Sharp S (1997) Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: Part I—The effects of heparin, protamine and propofol. Perfusion 12:163–165

    CAS  PubMed  Google Scholar 

  16. Gao F, Harris DN, Sapsed-Byrne S, Sharp S (1997) Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: Part III—Does haemolysis affect their accuracy? Perfusion 12:171–177

    CAS  PubMed  Google Scholar 

  17. Gregorio C di, Fano RA, Criscuolo M (1984) Melanotic schwannoma: a case report. Appl Pathol 2:110–115

    PubMed  Google Scholar 

  18. Gromov LA, Syrovatskaya LP, Ovinova GV (1992) Functional role of the neurospecific S-100 protein in the processes of memory. Neurosci Behav Physiol 22:25–29

    CAS  PubMed  Google Scholar 

  19. Hachimi-Idrissi S, Auwera M van der, Schiettecatte J, Ebinger G, Michotte Y, Huyghens L (2002) S-100 protein as early predictor of regaining consciousness after out of hospital cardiac arrest. Resuscitation 53:251–257

    Article  CAS  PubMed  Google Scholar 

  20. Haglid KG, Yang Q, Hamberger A, Bergman S, Widerberg A, Danielsen N (1997) S-100beta stimulates neurite outgrowth in the rat sciatic nerve grafted with acellular muscle transplants. Brain Res 753:196–201

    Article  CAS  PubMed  Google Scholar 

  21. Haimoto H, Hosoda S, Kato K (1987) Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest 57:489–498

    CAS  PubMed  Google Scholar 

  22. Herrmann M, Ebert AD, Galazky I, Wunderlich MT, Kunz WS, Huth C (2000) Neurobehavioral outcome prediction after cardiac surgery: role of neurobiochemical markers of damage to neuronal and glial brain tissue. Stroke 31:645–650

    CAS  PubMed  Google Scholar 

  23. Hill MD, Jackowski G, Bayer N, Lawrence M, Jaeschke R (2000) Biochemical markers in acute ischemic stroke. CMAJ 162:1139–1140

    CAS  PubMed  Google Scholar 

  24. Hopkins RO, Weaver LK, Pope D, Orme JF, Bigler ED, Larson-Lohr V (1999) Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160:50–56

    CAS  PubMed  Google Scholar 

  25. Ingebrigsten T, Romner S, Marup-Jensen S et al. (2000) The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj 14:1047–1055

    Article  PubMed  Google Scholar 

  26. Johnsson P, Backstrom M, Bergh C, Jonsson H, Luhrs C, Alling C (2003) Increased S100B in blood after cardiac surgery is a powerful predictor of late mortality. Ann Thorac Surg 75:162–168

    Article  PubMed  Google Scholar 

  27. Jones C, Griffiths RD, Humphris G (2000) Disturbed memory and amnesia related to intensive care. Memory 8:79–94

    Article  CAS  PubMed  Google Scholar 

  28. Jonsson H, Johnsson P, Alling C, Westaby S, Blomquist S (1998) Significance of serum S100 release after coronary artery bypass grafting. Ann Thorac Surg 65:1639–1644

    Article  CAS  PubMed  Google Scholar 

  29. Jonsson H, Johnsson P, Alling C, Backstrom M, Bergh C, Blomquist S (1999) S100beta after coronary artery surgery: release pattern, source of contamination, and relation to neuropsychological outcome. Ann Thorac Surg 68:2202–2208

    Article  CAS  PubMed  Google Scholar 

  30. Jonsson H, Johnsson P, Hoglund P, Alling C, Blomquist S (2000) Elimination of S100B and renal function after cardiac surgery. J Cardiothorac Vasc Anesth 14:698–701

    Article  CAS  PubMed  Google Scholar 

  31. Jonsson H, Johnsson P, Birch-Iensen M, Alling C, Westaby S, Blomquist S (2001) S100B as a predictor of size and outcome of stroke after cardiac surgery. Ann Thorac Surg 71:1433–1437

    Article  CAS  PubMed  Google Scholar 

  32. Kapural M, Krizanac-Bengez LJ, Barnett G et al. (2002) Serum S-100beta as a possible marker of blood-brain barrier disruption. Brain Res 940:102–104

    Article  CAS  PubMed  Google Scholar 

  33. Karpiak SE, Serokosz M, Rapport MM (1976) Effects of antisera to S-100 protein and to synaptic membrane fraction on maze performance and EEG. Brain Res 102:313–321

    Article  CAS  PubMed  Google Scholar 

  34. Kato K, Kimura S (1985) S100ao (alpha alpha) protein is mainly located in the heart and striated muscles. Biochim Biophys Acta 842:146–150

    Article  CAS  PubMed  Google Scholar 

  35. Kim JS, Yoon SS, Kim YH, Ryu JS (1996) Serial measurement of interleukin-6, transforming growth factor-beta, and S-100 protein in patients with acute stroke. Stroke 27:1553–1557

    CAS  PubMed  Google Scholar 

  36. Löffler G, Petrides PE (Hrsg) (2003) Biochemie und Pathobiochemie, 7. völlig neu bearb. Aufl. Springer, Berlin Heidelberg New York

  37. Martens P, Raabe A, Johnsson P (1998) Serum S-100 and neuron-specific enolase for prediction of regaining consciousness after global cerebral ischemia. Stroke 29:2363–2366

    CAS  PubMed  Google Scholar 

  38. Missler U, Wiesmann M, Friedrich C, Kaps M (1997) S-100 protein and neuron-specific enolase concentrations in blood as indicators of infarction volume and prognosis in acute ischemic stroke. Stroke 28:1956–1960

    CAS  PubMed  Google Scholar 

  39. Moore BW (1965) A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 19:739–743

    CAS  PubMed  Google Scholar 

  40. Pelinka LE, Toegel E, Mauritz W, Redl H (2003) Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock 19:195–200

    Article  CAS  PubMed  Google Scholar 

  41. Pleines UE, Morgant-Kossmann MC, Rancan M, Joller H, Trentz O, Kossmann T (2001) S-100beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma 18:491–498

    Article  CAS  PubMed  Google Scholar 

  42. Raabe A, Seifert V (1999) Fatal secondary increase in serum S-100B protein after severe head injury. Report of three cases. J Neurosurg 91:875–877

    CAS  PubMed  Google Scholar 

  43. Raabe A, Grolms C, Keller M, Dohnert J, Sorge O, Seifert V (1998) Correlation of computed tomography findings and serum brain damage markers following severe head injury. Acta Neurochir 140:787–791

    Article  CAS  Google Scholar 

  44. Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chem Acta 310:173–186

    Article  CAS  Google Scholar 

  45. Romner B, Ingebrigsten T, Kongstad P, Borgesen SE (2000) Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. J Neurotrauma 17:641–647

    Article  CAS  PubMed  Google Scholar 

  46. Rosen H, Rosengren L, Herlitz J, Blomstrand C (1998) Increased serum levels of the S-100 protein are associated with hypoxic brain damage after cardiac arrest. Stroke 29:473–477

    CAS  PubMed  Google Scholar 

  47. Rosen H, Sunnerhagen KS, Herlitz J, Blomstrand C, Rosengren L (2001) Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation 49:183–191

    Article  CAS  PubMed  Google Scholar 

  48. Sapsed-Byrne S, Gao F, Harris DN (1997) Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: Part II—Must samples be spun within 30 min? Perfusion 12:167–169

    CAS  PubMed  Google Scholar 

  49. Schäfer BW, Heizmann CW (1996) The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21:134–140

    Google Scholar 

  50. Selinfreund RH, Barger SW, Pledger WJ, Eldik LJ van (1991) Neurotrophic protein S100 beta stimulates glial cell proliferation. Proc Natl Acad Sci U S A 88:3554–3558

    Google Scholar 

  51. Tabuchi K, Ohnishi R, Nishimoto A, Isobe T, Okuyama T (1984) Reverse cellular distribution of calmodulin to S-100 protein in primate brain. Brain Res 298:353–357

    Article  CAS  PubMed  Google Scholar 

  52. Tiainen M, Roine RO, Pettila V, Takkunen O (2003) Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke 34:2881–2886

    Article  CAS  PubMed  Google Scholar 

  53. Unertl K, Kottler BM (1997) Prognostische Scores in der Intensivmedizin. Anaesthesist 46:471–480

    Article  CAS  PubMed  Google Scholar 

  54. Usui A, Kato K, Murase M, Hotta T, Tanaka M, Takeuchi E, Abe T (1994) Neural tissue-related proteins (NSE, G0 alpha, 28-kDa calbindin-D, S100b and CK-BB) in serum and cerebrospinal fluid after cardiac arrest. J Neurol Sci 123:134–139

    Article  CAS  PubMed  Google Scholar 

  55. Vries J de, Thijssen WA, Snels SE, Menovsky T, Peer NG, Lamers KJ (2001) Intraoperative values of S-100 protein, myelin basic protein, lactate, and albumin in the CSF and serum of neurosurgical patients. J Neurol Neurosurg Psychiatry 71:671–674

    Google Scholar 

  56. Westaby S, Saatvedt K, White S et al. (2000) Is there a relationship between serum S-100beta protein and neuropsychologic dysfunction after cardiopulmonary bypass? J Thorac Cardiovasc Surg 119:132–137

    Article  CAS  PubMed  Google Scholar 

  57. Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A (1997) Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochir 139:1161–1164

    CAS  Google Scholar 

  58. Woertgen C, Rothoerl RD, Metz C, Brawanski A (1999) Comparison of clinical, radiologic, and serum marker as prognostic factors after severe head injury. J Trauma 47:1126–1130

    CAS  PubMed  Google Scholar 

  59. Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M (1999) Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 30:1190–1195

    CAS  PubMed  Google Scholar 

  60. Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37:417–429

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fries, M., Bickenbach, J., Beckers, S. et al. Neuromonitoring in der Intensivmedizin mit S-100 Protein. Anaesthesist 53, 959–964 (2004). https://doi.org/10.1007/s00101-004-0743-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-004-0743-8

Schlüsselwörter

Keywords

Navigation