Skip to main content

Advertisement

Log in

Navigierte Korrekturarthrodese des unteren Sprunggelenks

Computer-Assisted Surgery-(CAS-)Guided Correction Arthrodesis of the Subtalar Joint

  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Zusammenfassung

Operationsziel

Wiederherstellung eines plantigraden, belastbaren Fußes bei Deformitäten am Rückfuß und gleichzeitigen degenerativen Veränderungen am unteren Sprunggelenk (USG).

Indikationen

Arthrose des USG und Fehlstellung des Rückfußes.

Kontraindikationen

Floride Infektionen am Rückfuß oder schwere Durchblutungsstörung.

Operationstechnik

Bauchlage und posterolateraler Zugang zum Subtalargelenk. Platzierung der dynamischen Referenzbasen in Talus und Kalkaneus über Stichinzisionen. Zweidimensionale Bildakquisition zur Navigation. Festlegung der Achsen von Talus und Kalkaneus, die im Verhältnis zueinander navigiert werden. Festlegung des Korrekturausmaßes anhand der präoperativen Planung. Darstellung des Subtalargelenks und Entknorpelung. Navigationsgestützte Stellungskorrektur und Transfixation des Korrekturergebnisses mit zwei 2,5-mm-Kirschner-Drähten. Transplantation von autologer Spongiosa und, wenn nötig, kortikalem Knochen in das Subtalargelenk. Dreidimensionale (3-D) Bildakquisition zur Analyse der Korrekturgenauigkeit und zur Planung der Bohrungen für die Schraubeninsertion. Navigierter Bohrvorgang und Einbringen der Schrauben. 3-D-Scan zur Kontrolle der Rückfußstellung und Implantatlage. Bei korrekter Position Einlage einer Drainage und schichtweiser Wundverschluss.

Weiterbehandlung

6-wöchige Teilbelastung mit 15 kg in einer Orthese (z.B. Vacuped, OPED GmbH, Valley). Danach Übergang zur Vollbelastung im festen Konfektionsschuh.

Ergebnisse

Vom 01.09.2006 bis 31.08.2008 wurden 26 Korrekturarthrodesen durchgeführt. Die Analyse der Genauigkeit durch Vergleich der im präoperativen Computertomogramm geplanten Korrektur und der im intraoperativen ARCADIS-3D-Scan gemessenen erreichten Korrektur zeigt eine Abweichung von maximal 2° oder 2 mm. Navigationsassoziierte Komplikationen wurden nicht beobachtet. In den bisher nach 2 Jahren nachuntersuchten 25 Fällen trat eine zeitgerechte Durchbauung ein.

Abstract

Objective

Restoration of a stable and plantigrade foot in deformities at the hindfoot and concomitant degenerative changes at the subtalar joint.

Indications

Deformities at the hindfoot and concomitant degenerative changes at the subtalar joint.

Contraindications

Active local infection or relevant vascular insufficiency.

Surgical Technique

Prone position and posterolateral approach to the subtalar joint. Placement of dynamic reference bases in talus and calcaneus through stab incisions. Two-dimensional image acquisition for navigation. Definition of the axes of talus and calcaneus, and of the extent of correction. Exposure of the subtalar joint and removal of remaining cartilage. Computer- assisted surgery-(CAS-)guided correction and transfixation of the corrected position with two 2.5-mm Kirschner wires. Transplantation of autologous cancellous and cortical bone, if necessary. Three-dimensional (3-D) image acquisition for analysis of the accuracy of the correction and planning of the drillings for the screws. CAS-guided drilling and insertion of the screws. 3-D image acquisition for analysis of the accuracy of the correction implant position. Wound closure in layers.

Postoperative Management

15 kg partial weight bearing in an orthosis (e.g. Vacuped TM, OPED Inc., Valley, Germany) for 6 weeks, followed by full weight bearing in a stable standard shoe.

Results

From September 1, 2006 to August 31, 2008, 26 correction arthrodeses were performed. The accuracy was assessed by intraoperative 3-D imaging. All achieved angles/translations were within a maximum deviation of 2°/2 mm when compared to the planned correction. Complications that were associated with CAS were not observed. In all 25 cases that completed 2-year follow-up, timely fusion was registered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adelaar RS. The treatment of complex fractures of the talus. Orthop Clin North Am 1989;20:691–707.

    CAS  PubMed  Google Scholar 

  2. Adelaar RS, Kyles MK. Surgical correction of resistant talipes equinovarus: observations and analysis — preliminary report. Foot Ankle 1981;2:126–37.

    CAS  PubMed  Google Scholar 

  3. Amon K. Luxationsfraktur der kuneonavikularen Gelenklinie. Klinik, Pathomechanismus und Therapiekonzept einer sehr seltenen Fussverletzung. Unfallchirurg 1990;93:431–4.

    CAS  PubMed  Google Scholar 

  4. Brutscher R. Frakturen und Luxationen des Mittel- und Vorfusses. Orthopäde 1991;20:67–75.

    CAS  PubMed  Google Scholar 

  5. Chauhan SK, Clark GW, Lloyd S, et al. Computer-assisted total knee replacement. A controlled cadaver study using a multi-parameter quantitative CT assessment of alignment (the Perth CT Protocol). J Bone Joint Surg Br 2004;86:818–23.

    Article  CAS  PubMed  Google Scholar 

  6. Chauhan SK, Scott RG, Breidahl W, Beaver RJ. Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br 2004;86:372–7.

    Article  CAS  PubMed  Google Scholar 

  7. Coetzee JC, Hansen ST. Surgical management of severe deformity resulting from posterior tibial tendon dysfunction. Foot Ankle Int 2001;22:944–9.

    CAS  PubMed  Google Scholar 

  8. Dahlen C, Zwipp H. [Computer-assisted surgical planning. 3-D software for the PC.] Unfallchirurg 2001;104:466–79.

    Article  CAS  PubMed  Google Scholar 

  9. DiGioia AM III, Blendea S, Jaramaz B. Computer-assisted orthopaedic surgery: minimally invasive hip and knee reconstruction. Orthop Clin North Am 2004;35:183–9.

    Article  PubMed  Google Scholar 

  10. Easley ME, Trnka HJ, Schon LC, Myerson MS. Isolated subtalar arthrodesis. J Bone Joint Surg Am 2000;82:613–24.

    CAS  PubMed  Google Scholar 

  11. Haaker RG, Stockheim M, Kamp M, et al. Computer-assisted navigation increases precision of component placement in total knee arthroplasty. Clin Orthop Relat Res 2005;433:152–9.

    Article  PubMed  Google Scholar 

  12. Hansen STJ. Functional reconstruction of the foot and ankle. Philadelphia- Baltimore-New York; Lippincott Williams & Wilkins, 2000.

    Google Scholar 

  13. Hildebrand KA, Buckley RE, Mohtadi NG, Faris P. Functional outcome measures after displaced intra-articular calcaneal fractures. J Bone Joint Surg Br 1996;78:119–23.

    CAS  PubMed  Google Scholar 

  14. Jolles BM, Genoud P, Hoffmeyer P. Computer-assisted cup placement techniques in total hip arthroplasty improve accuracy of placement. Clin Orthop Relat Res 2004;426:174–9.

    Article  PubMed  Google Scholar 

  15. Kitaoka HB, Alexander IJ, Adelaar RS, et al. Clinical rating systems for the ankle-hindfoot, midfoot, hallux, and lesser toes. Foot Ankle Int 1994;15:349–53.

    CAS  PubMed  Google Scholar 

  16. Koczewski P, Shadi M, Napiontek M. Foot lengthening using the Ilizarov device: the transverse tarsal joint resection versus osteotomy. J Pediatr Orthop B 2002;11:68–72.

    Article  PubMed  Google Scholar 

  17. Langdown AJ, Auld J, Bruce WJ. Computer-assisted knee arthroplasty versus a conventional jig-based technique. J Bone Joint Surg Br 2005;87:588–9.

    Article  CAS  PubMed  Google Scholar 

  18. Madezo P, de Cussac JB, Gouin F, et al. [Combined tibio-talar and subtalar arthrodesis by retrograde nail in hindfoot rheumatoid arthritis.] Rev Chir Orthop Reparatrice Appar Mot 1998;84:646–52.

    CAS  PubMed  Google Scholar 

  19. Marti RK, de Heus JA, Roolker W, et al. Subtalar arthrodesis with correction of deformity after fractures of the os calcis. J Bone Joint Surg Br 1999;81:611–6.

    Article  CAS  PubMed  Google Scholar 

  20. Mosier-LaClair S, Pomeroy G, Manoli A. Operative treatment of the difficult stage 2 adult acquired flatfoot deformity. Foot Ankle Clin 2001;6:95–119.

    Article  CAS  PubMed  Google Scholar 

  21. Nogler M. Navigated minimal invasive total hip arthroplasty. Surg Technol Int 2004;12:259–62.

    PubMed  Google Scholar 

  22. Rammelt S, Grass R, Zawadski T, et al. Foot function after subtalar distraction bone-block arthrodesis. A prospective study. J Bone Joint Surg Br 2004;86:659–68.

    Article  CAS  PubMed  Google Scholar 

  23. Richter M. Experimental comparison between computer assisted surgery (CAS) based and C-arm based correction of hind- and midfoot deformities. Osteo Trauma Care 2003;11:29–34.

    Article  Google Scholar 

  24. Richter M. Computer based systems in foot and ankle surgery at the beginning of the 21st century. Fuß Sprunggelenk 2006;4:59–71.

    Article  Google Scholar 

  25. Richter M, Amiot LP, Neller S, et al. Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 2000;9:Suppl 1:S65–70.

    Article  PubMed  Google Scholar 

  26. Richter M, Geerling J, Frink M, et al. Computer-assisted surgery (CAS) based correction of posttraumatic ankle and hindfoot deformities — preliminary results. Foot Ankle Surg 2006;12:113–9.

    Article  Google Scholar 

  27. Richter M, Mattes T, Cakir B. Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 2004;13:50–9.

    Article  PubMed  Google Scholar 

  28. Richter M, Wippermann B, Krettek C, et al. Fractures and fracture dislocations of the midfoot — occurrence, causes and long-term results. Foot Ankle Int 2001;22:392–8.

    CAS  PubMed  Google Scholar 

  29. Richter M, Zech S, Geerling J, et al. A new foot and ankle outcome score: questionnaire based, subjective, Visual-Analogue-Scale, validated and computerized. Foot Ankle Surg 2006;12:191–9.

    Article  Google Scholar 

  30. Sammarco GJ, Conti SF. Surgical treatment of neuroarthropathic foot deformity. Foot Ankle Int 1998;19:102–9.

    CAS  PubMed  Google Scholar 

  31. Stephens HM, Sanders R. Calcaneal malunions: results of a prognostic computed tomography classification system. Foot Ankle Int 1996;17:395–401.

    CAS  PubMed  Google Scholar 

  32. Stephens HM, Walling AK, Solmen JD, Tankson CJ. Subtalar repositional arthrodesis for adult acquired flatfoot. Clin Orthop Relat Res 1999;365:69–73.

    Article  PubMed  Google Scholar 

  33. Suren EG, Zwipp H. Luxationsfrakturen im Chopart- und Lisfranc-Gelenk. Unfallchirurg 1989;92:130–9.

    CAS  PubMed  Google Scholar 

  34. Swank ML. Computer-assisted surgery in total knee arthroplasty: recent advances. Surg Technol Int 2004;12:209–13.

    PubMed  Google Scholar 

  35. Toolan BC, Sangeorzan BJ, Hansen ST Jr. Complex reconstruction for the treatment of dorsolateral peritalar subluxation of the foot. Early results after distraction arthrodesis of the calcaneocuboid joint in conjunction with stabilization of, and transfer of the flexor digitorum longus tendon to, the midfoot to treat acquired pes planovalgus in adults. J Bone Joint Surg Am 1999;81:1545–60.

    CAS  PubMed  Google Scholar 

  36. Trnka HJ, Easley ME, Lam PW, et al. Subtalar distraction bone block arthrodesis. J Bone Joint Surg Br 2001;83:849–54.

    Article  CAS  PubMed  Google Scholar 

  37. Victor J, Hoste D. Image-based computer-assisted total knee arthroplasty leads to lower variability in coronal alignment. Clin Orthop Relat Res 2004;428:131–9.

    Article  PubMed  Google Scholar 

  38. Weber BG. Subtalare Arthrodese nach Kalkaneusfrakturen. Z Unfallmed Berufskr 1971;64:66.

    CAS  PubMed  Google Scholar 

  39. Wei SY, Sullivan RJ, Davidson RS. Talo-navicular arthrodesis for residual midfoot deformities of a previously corrected clubfoot. Foot Ankle Int 2000;21:482–5.

    CAS  PubMed  Google Scholar 

  40. Zwipp H. Chirurgie des Fusses. Wien-New York: Springer, 1994.

    Google Scholar 

  41. Zwipp H, Dahlen C, Randt T, Gavlik JM. Komplextrauma des Fusses. Orthopäde 1997;26:1046–56.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martinus Richter.

Additional information

Zeichner: Rüdiger Himmelhan, Heidelberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, M. Navigierte Korrekturarthrodese des unteren Sprunggelenks. Orthop Traumatol 22, 402–413 (2010). https://doi.org/10.1007/s00064-010-8069-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-010-8069-y

Schlüsselwörter

Key Words

Navigation