Skip to main content
Log in

Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Curcumin is an important molecule found in turmeric plants and has been reported to exhibit some profound anti-inflammatory activities by interacting with several important molecular targets found in the mitogen-activated protein kinase and NF-κβ pathways. As part of our continuing effort to search for new anti-inflammatory agents with better in vitro and in vivo efficacies, we have synthesized a series of new unsymmetrical dicarbonyl curcumin derivatives and tested their effects on prostaglandin E2 secretion level in interferon-γ/lipopolysaccharide-activated macrophage cells. Among those, five compounds exhibited remarkable suppression on prostaglandin E2 production with IC50 values ranging from 0.87 to 18.41 µM. The most potent compound 17f was found to down-regulate the expression of cyclooxygenase-2 mRNA suggesting that this series of compounds could possibly target the mitogen-activated protein kinase signal transduction pathway. Whilst the compound did not affect the expression of the conventional mitogen-activated protein kinases, the results suggest that it could disrupt the phosphorylation and activation of the proteins particularly the c-Jun N-terminal kinases. Finally, the binding interactions were examined using the molecular docking and dynamics simulation approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asai A, Miyazawa T (2000) Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci 67(23):2785–2793

    Article  CAS  PubMed  Google Scholar 

  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci 98(18):10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukhari SNA, Lauro G, Jantan I, Bifulco G, Amjad MW (2014) Pharmacological evaluation and docking studies of α,β-unsaturated carbonyl based synthetic compounds as inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and proinflammatory cytokines. Bioorganic Med Chem 22(15):4151–4161

    Article  CAS  Google Scholar 

  • Chen YR, Tan TH (1998) Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene 17(2):173–178

    Article  CAS  PubMed  Google Scholar 

  • Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16(3):273–284

    Article  CAS  Google Scholar 

  • El-Azab M, Hishe H, Moustafa Y, El-Awady E-S (2011) Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur J Pharmacol 652(1–3):7–14

    Article  CAS  PubMed  Google Scholar 

  • Ireson C, Orr S, Jones DJ, Verschoyle R, Lim CK, Luo JL, Howells L, Plummer S, Jukes R, Williams M, Steward WP, Gescher A (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61(3):1058–1064

    CAS  PubMed  Google Scholar 

  • Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomark Prev 11(1):105–111

    CAS  Google Scholar 

  • Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D (2014) Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol 20(2):322–330

    Article  CAS  PubMed  Google Scholar 

  • Koeberle A, Northoff H, Werz O (2009) Curcumin blocks prostaglandin E2 biosynthesis through direct inhibition of the microsomal prostaglandin E2 synthase-1. Mol Cancer Ther 8(8):2348–2355

    Article  CAS  PubMed  Google Scholar 

  • Kumari R, Kumar R, Lynn A (2014) g_mmpbsa A GROMACS Tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54(7):1951–1962

    Article  CAS  PubMed  Google Scholar 

  • Lee K-H, Ab. Aziz FH, Syahida A, Abas F, Shaari K, Israf DA, Lajis NH (2009) Synthesis and biological evaluation of curcumin-like diarylpentanoid analogs for anti-inflammatory, antioxidant and anti-tyrosinase activities. Eur J Med Chem 44(8):3195–3200

    Article  CAS  PubMed  Google Scholar 

  • Leong S, Faudzi S, Abas F, Aluwi M, Rullah K, Wai L, Bahari M, Ahmad S, Tham C, Shaari K, Lajis N (2014) Synthesis and sar study of diarylpentanoid analogs as new anti-inflammatory agents. Molecules 19(10):16058

    Article  PubMed  Google Scholar 

  • Leong SW, Faudzi SMM, Abas F, Aluwi MFFM, Rullah K, Lam KW, Bahari MNA, Ahmad S, Tham CL, Shaari K, Lajis NH (2015) Nitric oxide inhibitory activity and antioxidant evaluations of 2-benzoyl-6-benzylidenecyclohexanone analogs, a novel series of curcuminoid and diarylpentanoid derivatives. Bioorganic Med Chem Lett 25(16):3330–3337

    Article  CAS  Google Scholar 

  • Mehta K, Pantazis P, McQueen T, Aggarwal BB (1997) Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 8(5):470–481

    Article  CAS  PubMed  Google Scholar 

  • Mohd Aluwi MFF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, Mohd Faudzi SM, Jalil J, Abas F, Mohd Fauzi N, Ismail NH, Jantan I, Lam KW (2016) Synthesis of unsymmetrical monocarbonyl curcumin analogs with potent inhibition on prostaglandin E2 production in LPS-induced murine and human macrophages cell lines. Bioorganic Med Chem Lett 26(10):2531–2538

  • Mohd Faudzi SM, Leong SW, Abas F, Mohd Aluwi MFF, Rullah K, Lam KW, Ahmad S, Tham CL, Shaari K, Lajis NH (2015) Synthesis, biological evaluation and QSAR studies of diarylpentanoid analogs as potential nitric oxide inhibitors. MedChemComm 6(6):1069–1080

    Article  CAS  Google Scholar 

  • Moore TW, Zhu S, Randolph R, Shoji M, Snyder JP (2014) Liver S9 fraction-derived metabolites of curcumin analog UBS109. ACS Med Chem Lett 5(4):288–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notoya M, Nishimura H, Woo J-T, Nagai K, Ishihara Y, Hagiwara H (2006) Curcumin inhibits the proliferation and mineralization of cultured osteoblasts. Eur J Pharmacol 534(1–3):55–62

    Article  CAS  PubMed  Google Scholar 

  • Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27(4):486–494

    CAS  PubMed  Google Scholar 

  • Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta1813(9):1619–1633

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–54. btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao KMK (2001) MAP kinase activation in macrophages. J Leukoc Biol 69(1):3–10

    CAS  PubMed  Google Scholar 

  • Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, Limtrakul P, Badmaev V, Aggarwal BB (2007) Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28(8):1765–1773

    Article  CAS  PubMed  Google Scholar 

  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli S, Capone ML, Sciulli MG, Ricciotti E, Patrignani P (2002) The biochemical selectivity of novel COX-2 inhibitors in whole blood assays of COX-isozyme activity. Curr Med Res Opin 18(8):503–511

    Article  CAS  PubMed  Google Scholar 

  • Thalhamer T, McGrath MA, Harnett MM (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology 47(4):409–414

    Article  CAS  PubMed  Google Scholar 

  • Tham CL, Hazeera Harith H, Wai Lam K, Joong Chong Y, Singh Cheema M, Roslan Sulaiman M, Hj Lajis N, Ahmad Israf D (2015) The synthetic curcuminoid BHMC restores endotoxin-stimulated HUVEC dysfunction:specific disruption on enzymatic activity of p38 MAPK. Eur J Pharmacol 749:1–11

    Article  CAS  PubMed  Google Scholar 

  • Tham CL, Lam KW, Rajajendram R, Cheah YK, Sulaiman MR, Lajis NH, Kim MK, Israf DA (2011) The effects of a synthetic curcuminoid analog, 2,6-bis-(4-hydroxyl-3-methoxybenzylidine)cyclohexanone on proinflammatory signaling pathways and CLP-induced lethal sepsis in mice. Eur J Pharmacol 652(1–3):136–144

    Article  CAS  PubMed  Google Scholar 

  • Tham CL, Liew CY, Lam KW, Mohamad A-S, Kim MK, Cheah YK, Zakaria Z-A, Sulaiman M-R, Lajis NH, Israf DA (2010) A synthetic curcuminoid derivative inhibits nitric oxide and proinflammatory cytokine synthesis. Eur J Pharmacol 628(1–3):247–254

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  • Wei X, Senanayake TH, Bohling A, Vinogradov SV (2014) Targeted nanogel conjugate for improved stability and cellular permeability of curcumin: synthesis, pharmacokinetics, and tumor growth inhibition. Mol Pharm 11(9):3112–3122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JY, Zhang LJ, Zhao SQ, Yuan D, Lian GN, Wang XX, Zhang HT, Wang LH, Wu CF (2010) Demethoxycurcumin, bisdemethoxycurcumin, two natural derivatives of curcumin, attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NFκB signaling pathways in N9 microglia induced by lipopolysaccharide. Neurosci Res 68(Supplement 1):e451–e452

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by ScienceFund (02-01-02-SF00665), Ministry of Science, Technology & Innovation, Malaysia and FRGS (FRGS/2/2014/ST01/UKM/02/3), Ministry of High Education, Malaysia. Authors also thank Universiti Kebangsaan Malaysia for the funds provided under the Research University Grant UKM-DIP-2014-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kok Wai Lam.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Aluwi, M.F.F., Rullah, K., Haque, M.A. et al. Suppression of PGE2 production via disruption of MAPK phosphorylation by unsymmetrical dicarbonyl curcumin derivatives. Med Chem Res 26, 3323–3335 (2017). https://doi.org/10.1007/s00044-017-2025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2025-4

Keywords

Navigation