Skip to main content
Log in

Research on drug candidate anticholinesterase molecules from Achillea biebersteinii Afan. using by molecular docking and in vitro methods

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Quercetin-7-O-β-D-glucoside (1) and patuletin-7-O-β-D-glucoside (2) isolated from Achillea biebersteinii and different extracts of aerial parts of the plant were investigated for antioxidant and anticholinesterase effects. The ethyl acetate extract possessed the highest inhibitory activity against acetylcholinesterase (67.2 ± 1.32 %), whereas it showed lower inhibitory activity against butyrylcholinesterase (50.3 ± 1.03 %) as compared with neostigmine (100 %), at 200 μg/mL. Compound 2 exhibited the strongest inhibition to acetylcholinesterase and compound 1 did so to butyrylcholinesterase with IC50 values of 1.77 and 2.24 µM, respectively. Additionally, compound 1 showed the strongest antioxidant capacity. Docking simulations revealed that compounds 1 and 2 targeted both the catalytic and the peripheral active sites of acetylcholinesterase and butyrylcholinesterase with many hydrogen bond interactions. The ethyl acetate extract has the richest phenolic content (205.7 GAE/mg ext), and the best antioxidant capacity results were observed with it among the tested extracts. The mean amount of total flavonoids was 3.39 % (calculated as rutin).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ak T, Gulcin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem-Biol Interact 174:27–37

    Article  CAS  PubMed  Google Scholar 

  • Baris D, Kizil M, Aytekin C, Kizil G, Yavuz M, Ceken B, Ertekin AS (2011) Antimicrobial and antioxidant activity of ethanol extract of three Hypericum and three Achillea species from Turkey. Int J Food Prop 14:339–355

    Article  CAS  Google Scholar 

  • Bicha S, Amrani A, Benaissa O, León F, Zama D, Brouard I, Benayache S, Bentamene A, Benayache F (2013) A flavonoid with high antioxidant effect from Centaurea acaulis L. Der Pharm Lett 5:24–30

    Google Scholar 

  • Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Article  CAS  Google Scholar 

  • Bullock R (2004) Galantamine: use in Alzheimer’s disease and related disorders. Expert Rev Neurother 4:153–163

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone J, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Goren N, Oksuz S, Ulubelen A (1988) A sesquiterpene lactone, sintenin from Achillea sintenisii. Phytochemistry 27:2346–2347

    Article  CAS  Google Scholar 

  • Guvenalp Z, Ozbek H, Yuzbasioglu M, Kuruuzum-Uz A, Demirezer LÖ (2010) Flavonoid quantification and antioxidant activities of some Pimpinella species. Rev Anal Chem 29:233–240

    Article  CAS  Google Scholar 

  • Hodges JR (2006) Alzheimer’s centennial legacy: origins landmarks and the current status of knowledge concerning cognitive aspects. Brain A J Neurol 129:2811–2822

    Article  Google Scholar 

  • Hoozesmans JJM, Veerhuis R, Rozemuller JM, Eikelenboom P (2006) Neuroinflammation and regeneration in the in the early stages of Alzheimer’s disease pathology. Int J Dev Neurosci 24:157–165

    Article  Google Scholar 

  • Houghton P, Howes MJ (2005) Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals 14:6–22

    Article  CAS  PubMed  Google Scholar 

  • Huber-Morath A (1975) Achillea L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 5. Edinburgh University Press, Edinburgh, pp 224–252

    Google Scholar 

  • Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I (2011) Determination of antioxidant properties of ethanol and water extracts of Achillea millefolium L. (Yarrow). Asian J Chem 23:3172–3176

    CAS  Google Scholar 

  • Lar’kina MS, Kadyrova TV, Ermilova EV, Krasnov EA (2009) Quantitative determination of flavonoids from the aerial part of greater knapweed (Centaurea scabinosa L.). Pharm Chem J 43:14–17

    Google Scholar 

  • Li Y, Qiao W, Yuan K (2011) Isolation and structural elucidation of chemical constituents of Mussaenda hainanensis Merr. J Med Plants Res 5:1459–1465

    CAS  Google Scholar 

  • Mahmoud AA, Al-Shihry SS, Hegazy MEF (2012) A new epimeric sesquiterpene lactone from Achillea ligustica. Rec Nat Prod 6:21–27

    CAS  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda H, Yasumoto K, Iwami K (1966) Antioxidation action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo 19:210–214

    Article  CAS  Google Scholar 

  • Orth M, Juchelka D, Mosandl A, Czygan FC (2000) Chiral monoterpenes as taxonomically useful markers for Achillea species differentiation. Pharmazie 55:456–459

    CAS  PubMed  Google Scholar 

  • Pecetti L, Tava A, Romani M, Cecotti R, Mella M (2012) Variation in terpene and linear-chain hydrocarbon content in yarrow (Achillea millefolium L.) germplasm from the Rhaetian Alps, Italy. Chem Biodivers 9:2282–2294

    Article  CAS  PubMed  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231

    Article  CAS  PubMed  Google Scholar 

  • Sezik E, Yesilada E, Honda G (2001) Traditional medicine in Turkey X. Folk medicine in Central Anatolia. J Ethnopharmacol 75:95–115

    Article  CAS  PubMed  Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. Am J Enology and Viticult 28:49–55

    CAS  Google Scholar 

  • Uc EY, Rizzo M (2008) Driving and neurodegenerative diseases. Curr Neurol Neurosci 8:377–383

    Article  Google Scholar 

  • Ulubelen A, Oksuz S, Schuster A (1990) A sesquiterpene lactone from Achillea millefolium subsp. millefolium. Phytochemistry 29:3948–3949

    Article  CAS  Google Scholar 

  • Vitalini S, Beretta G, Iriti M, Orsenigo S, Basilico N, Acqua S, Lorizzi M, Fico G (2011) Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim Pol 58:203–219

    CAS  PubMed  Google Scholar 

  • Yerdelen KÖ, Tosun E (2015) Synthesis, docking and biological evaluation of oxamide and fumaramide analogs as potential AChE and BuChE inhibitors. Med Chem Res 24:588–602

    Article  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The Foundation of Atatürk University (2013/274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zühal Güvenalp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevindik, H.G., Güvenalp, Z., Yerdelen, K.Ö. et al. Research on drug candidate anticholinesterase molecules from Achillea biebersteinii Afan. using by molecular docking and in vitro methods. Med Chem Res 24, 3794–3802 (2015). https://doi.org/10.1007/s00044-015-1423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1423-8

Keywords

Navigation