Skip to main content

Advertisement

Log in

Role of SLAM-Associated Protein in the Pathogenesis of Autoimmune Diseases and Immunological Disorders

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is an adaptor molecule containing a Src homology 2 (SH2) domain. SAP is expressed in T cells and natural killer (NK) cells and binds to the cytoplasmic domains of SLAM family receptors, resulting in the subsequent recruitment of Fyn. The SAP (SH2D1A) gene is located on the X chromosome and is responsible for X-linked lymphoproliferative disease, characterized by higher susceptibility to Epstein-Barr virus infection. The SAP-mediated signal is not only essential for the development of NKT cells, i.e. unconventional CD1d-restricted T cells with invariant Vα14 T cell receptors, but also for the regulation of the function of NK cells and conventional T cells. The role of SAP-mediated signaling in the induction of autoimmune diseases has been analyzed using animal models such as lupus, hepatitis, and graft-versus-host disease and is considered important in their pathogenesis in humans. In this review we highlight the current findings on SAP-mediated signaling in hematopoietic cells and discuss its importance in autoimmune diseases and immunological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

SLAM:

Signaling lymphocytic activation molecule

SAP:

SLAM-associated protein

XLP:

X-linked lymphoproliferative disease

NK:

Natural killer

EBV:

Epstein-Barr virus

GVHD:

Graft-versus-host disease

Ig:

Immunoglobulin

ITSM:

Immunoreceptor tyrosine-based switching motif

DC:

Dendritic cell

SNP:

Single-nucleotide polymorphism

SH2:

Src homology 2

EAT-2:

Ewing’s sarcoma-activated transcript-2

ERT:

EAT-2-related transducer

AICD:

Activation-induced cell death

MR-1:

MHC-related 1

MAIT:

Mucosal-associated invariant T

XIAP:

X-linked inhibitor of apoptosis

SLE:

Systemic lupus erythematosus

RA:

Rheumatoid arthritis

FasL:

Fas ligand

ConA:

Concanavalin A

MHC:

Major histocompatibility complex

mHC:

Minor histocompatibility complex

BMT:

Bone marrow transplantation

References

  • Adachi M, Watanabe-Fukunaga R, Nagata S (1993) Aberrant transcription caused by the insertion of an early transposable element in an intron of the Fas antigen gene of lpr mice. Proc Natl Acad Sci USA 90:1756–1760

    Article  CAS  PubMed  Google Scholar 

  • Adams KM, Holmberg LA, Leisenring W et al (2004) Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation. Blood 104:1894–1897

    Article  CAS  PubMed  Google Scholar 

  • Allen RD, Marshall JD, Roths JB et al (1990a) Bone marrow transplantation from mutant lpr/lpr mice. Functional abnormalities rather than alloantigenic differences appear to determine the development of a graft-vs.-host-like syndrome. Eur J Immunol 20:2057–2066

    Article  CAS  PubMed  Google Scholar 

  • Allen RD, Marshall JD, Roths JB et al (1990b) Differences defined by bone marrow transplantation suggest that lpr and gld are mutations of genes encoding an interacting pair of molecules. J Exp Med 172:1367–1375

    Article  CAS  PubMed  Google Scholar 

  • Anand S, Wang P, Yoshimura K et al (2006) Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. J Clin Invest 116:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Andrews BS, Eisenberg RA, Theofilopoulos AN et al (1978) Spontaneous murine lupus-like syndromes. Clinical and immunopathological manifestations in several strains. J Exp Med 148:1198–1215

    Article  CAS  PubMed  Google Scholar 

  • Cannons J, Yu L, Hill B et al (2004) SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 21:693–706

    Article  CAS  PubMed  Google Scholar 

  • Chan AY, Westcott JM, Mooney JM et al (2006) The role of SAP and the SLAM family in autoimmunity. Curr Opin Immunol 18:656–664

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Tai AK, Lin M et al (2007) Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  • Chu JL, Drappa J, Parnassa A et al (1993) The defect in Fas mRNA expression in MRL/lpr mice is associated with insertion of the retrotransposon, ETn. J Exp Med 178:723–730

    Article  CAS  PubMed  Google Scholar 

  • Chu JL, Ramos P, Rosendorff A et al (1995) Massive upregulation of the Fas ligand in lpr and gld mice: implications for Fas regulation and the graft-versus-host disease-like wasting syndrome. J Exp Med 181:393–398

    Article  CAS  PubMed  Google Scholar 

  • Crotty S, Kersh E, Cannons J et al (2003) SAP is required for generating long-term humoral immunity. Nature 421:282–287

    Article  CAS  PubMed  Google Scholar 

  • Croxford JL, Miyake S, Huang YY et al (2006) Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat Immunol 7:987–994

    Article  CAS  PubMed  Google Scholar 

  • Cunninghame Graham DS, Vyse TJ, Fortin PR et al (2008) Association of LY9 in UK and Canadian SLE families. Genes Immun 9:93–102

    Article  CAS  PubMed  Google Scholar 

  • Czar M, Kersh E, Mijares L et al (2001) Altered lymphocyte responses and cytokine production in mice deficient in the X-linked lymphoproliferative disease gene SH2D1A/DSHP/SAP. Proc Natl Acad Sci USA 98:7449–7454

    Article  CAS  PubMed  Google Scholar 

  • Davidson WF, Dumont FJ, Bedigian HG et al (1986) Phenotypic, functional, and molecular genetic comparisons of the abnormal lymphoid cells of C3H-lpr/lpr and C3H-gld/gld mice. J Immunol 136:4075–4084

    CAS  PubMed  Google Scholar 

  • Diao H, Kon S, Iwabuchi K et al (2004) Osteopontin as a mediator of NKT cell function in T cell-mediated liver diseases. Immunity 21:539–550

    Article  CAS  PubMed  Google Scholar 

  • Eberl G, Lowin-Kropf B, MacDonald H (1999) Cutting edge: NKT cell development is selectively impaired in Fyn- deficient mice. J Immunol 163:4091–4094

    CAS  PubMed  Google Scholar 

  • Engel P, Eck MJ, Terhorst C (2003) The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nat Rev Immunol 3:813–821

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara M, Kariyone A (1984) One-way occurrence of graft-versus-host disease in bone marrow chimaeras between congenic MRL mice. Immunology 53:251–256

    CAS  PubMed  Google Scholar 

  • Furukawa H, Ono M (2005) The polymorphisms and the expression patterns of the SLAM family receptor genes in the lupus prone mice. Clin Immunol Allergol 44:429–433

    CAS  Google Scholar 

  • Furukawa H, Kitazawa H, Kaneko I et al (2009) Role of 2B4-mediated signals in the pathogenesis of a murine hepatitis model independent of Fas and Valpha14 NKT cells. Immunology 128(suppl 1):e151–e158

    Article  PubMed  Google Scholar 

  • Glazier A, Tutschka PJ, Farmer ER et al (1983) Graft-versus-host disease in cyclosporin A-treated rats after syngeneic and autologous bone marrow reconstitution. J Exp Med 158:1–8

    Article  CAS  PubMed  Google Scholar 

  • Hess AD, Horwitz L, Beschorner WE et al (1985) Development of graft-vs.-host disease-like syndrome in cyclosporine-treated rats after syngeneic bone marrow transplantation. I. Development of cytotoxic T lymphocytes with apparent polyclonal anti-Ia specificity, including autoreactivity. J Exp Med 161:718–730

    Article  CAS  PubMed  Google Scholar 

  • Hron J, Caplan L, Gerth A et al (2004) SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med 200:261–266

    Article  CAS  PubMed  Google Scholar 

  • Isomaki P, Aversa G, Cocks B et al (1997) Increased expression of signaling lymphocytic activation molecule in patients with rheumatoid arthritis and its role in the regulation of cytokine production in rheumatoid synovium. J Immunol 159:2986–2993

    CAS  PubMed  Google Scholar 

  • Ito MR, Terasaki S, Itoh J et al (1997) Rheumatic diseases in an MRL strain of mice with a deficit in the functional Fas ligand. Arthritis Rheum 40:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Jennings P, Chan A, Schwartzberg P et al (2008) Antigen-specific responses and ANA production in B6.Sle1b mice: a role for SAP. J Autoimmun 31:345–353

    Article  CAS  PubMed  Google Scholar 

  • Jordan M, Fletcher J, Pellicci D et al (2007) Slamf1, the NKT cell control gene Nkt1. J Immunol 178:1618–1627

    CAS  PubMed  Google Scholar 

  • Kaneko Y, Harada M, Kawano T et al (2000) Augmentation of Valpha14 NKT cell-mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A-induced hepatitis. J Exp Med 191:105–114

    Article  CAS  PubMed  Google Scholar 

  • Kawachi I, Maldonado J, Strader C et al (2006) MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J Immunol 176:1618–1627

    CAS  PubMed  Google Scholar 

  • Komori H, Furukawa H, Mori S et al (2006) A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J Immunol 176:395–400

    CAS  PubMed  Google Scholar 

  • Kumar K, Li L, Yan M et al (2006) Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312:1665–1669

    Article  CAS  PubMed  Google Scholar 

  • Latchman Y, McKay P, Reiser H (1998) Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol 161:5809–5812

    CAS  PubMed  Google Scholar 

  • Latif T, Pohlman B, Kalaycio M et al (2003) Syngeneic graft-versus-host disease: a report of two cases and literature review. Bone Marrow Transpl 32:535–539

    Article  CAS  Google Scholar 

  • Latour S, Veillette A (2003) Molecular and immunological basis of X-linked lymphoproliferative disease. Immunol Rev 192:212–224

    Article  CAS  PubMed  Google Scholar 

  • Latour S, Roncagalli R, Chen R et al (2003) Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol 5:149–154

    Article  CAS  PubMed  Google Scholar 

  • Ma CS, Nichols KE, Tangye SG (2007) Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol 25:337–379

    Article  CAS  PubMed  Google Scholar 

  • Massaguer A, Perez-Del-Pulgar S, Engel P et al (2002) Concanavalin-A-induced liver injury is severely impaired in mice deficient in P-selectin. J Leukoc Biol 72:262–270

    CAS  PubMed  Google Scholar 

  • Matsuda JL, Gapin L (2005) Developmental program of mouse Valpha14i NKT cells. Curr Opin Immunol 17:122–130

    Article  CAS  PubMed  Google Scholar 

  • Morra M, Lu J, Poy F et al (2001) Structural basis for the interaction of the free SH2 domain EAT-2 with SLAM receptors in hematopoietic cells. EMBO J 20:5840–5852

    Article  CAS  PubMed  Google Scholar 

  • Mosbach-Ozmen L, Loor F (1987) Bone marrow transfers in X-irradiated mice congenic at the lpr locus: some paradoxical effects. Thymus 9:197–210

    CAS  PubMed  Google Scholar 

  • Nguyen C, Limaye N, Wakeland E (2002) Susceptibility genes in the pathogenesis of murine lupus. Arthritis Res 4:S255–S263

    Article  PubMed  Google Scholar 

  • Nichols KE, Hom J, Gong SY et al (2005) Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med 11:340–345

    Article  CAS  PubMed  Google Scholar 

  • Perkins DL, Michaelson J, Glaser RM et al (1987) Selective elimination of non-lpr lymphoid cells in mice undergoing lpr-mediated graft-vs-host disease. J Immunol 139:1406–1413

    CAS  PubMed  Google Scholar 

  • Piguet PF, Izui S, Janin-Mercier A et al (1987) Interstitial pneumonitis and hepatitis after transfer of bone marrow cells bearing the lpr gene to irradiated recipients: a disease due to large granular leucocytes? Scand J Immunol 26:603–610

    Article  CAS  PubMed  Google Scholar 

  • Rigaud S, Fondaneche M, Lambert N et al (2006) XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–114

    Article  CAS  PubMed  Google Scholar 

  • Roncagalli R, Taylor J, Zhang S et al (2005) Negative regulation of natural killer cell function by EAT-2, a SAP-related adaptor. Nat Immunol 6:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Roths JB, Murphy ED, Eicher EM (1984) A new mutation, gld, that produces lymphoproliferation and autoimmunity in C3H/HeJ mice. J Exp Med 159:1–20

    Article  CAS  PubMed  Google Scholar 

  • Sawada S, Takei M (2005) Epstein-Barr virus etiology in rheumatoid synovitis. Autoimmun Rev 4:106–110

    Article  CAS  PubMed  Google Scholar 

  • Sayos J, Wu C, Morra M et al (1998) The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature 395:462–469

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Yamada R, Kochi Y et al (2008) Functional SNPs in CD244 increase the risk of rheumatoid arthritis in a Japanese population. Nat Genet 40:1224–1229

    Article  CAS  PubMed  Google Scholar 

  • Tagawa Y, Kakuta S, Iwakura Y (1998) Involvement of Fas/Fas ligand system-mediated apoptosis in the development of concanavalin A-induced hepatitis. Eur J Immunol 28:4105–4113

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Tanaka M, Brannan CI et al (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76:969–976

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Yagi T, Kakinuma S et al (1997) Suppression of autoimmune disease and of massive lymphadenopathy in MRL/Mp-lpr/lpr mice lacking tyrosine kinase Fyn (p59fyn). J Immunol 159:2532–2541

    CAS  PubMed  Google Scholar 

  • Takeda K, Hayakawa Y, Van Kaer L et al (2000) Critical contribution of liver natural killer T cells to a murine model of hepatitis. Proc Natl Acad Sci USA 97:5498–5503

    Article  CAS  PubMed  Google Scholar 

  • Takei M, Ishiwata T, Mitamura K et al (2001) Decreased expression of signaling lymphocytic-activation molecule-associated protein (SAP) transcripts in T cells from patients with rheumatoid arthritis. Int Immunol 13:559–565

    Article  CAS  PubMed  Google Scholar 

  • Theofilopoulos AN, Balderas RS, Gozes Y et al (1985) Association of lpr gene with graft-vs.-host disease-like syndrome. J Exp Med 162:1–18

    Article  CAS  PubMed  Google Scholar 

  • Tiegs G, Hentschel J, Wendel A (1992) A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J Clin Invest 90:196–203

    Article  CAS  PubMed  Google Scholar 

  • Toyabe S, Seki S, Iiai T et al (1997) Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol 159:1537–1542

    CAS  PubMed  Google Scholar 

  • Vaux D, Silke J (2005) IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 6:287–297

    Article  CAS  PubMed  Google Scholar 

  • Veillette A (2006) Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol 6:56–66

    Article  CAS  PubMed  Google Scholar 

  • Veillette A, Dong Z, Latour S (2007) Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27:698–710

    Article  CAS  PubMed  Google Scholar 

  • Wandstrat A, Nguyen C, Limaye N et al (2004) Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21:769–780

    Article  CAS  PubMed  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG et al (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Nguyen K, Pien G et al (2001) SAP controls T cell responses to virus and terminal differentiation of TH2 cells. Nat Immunol 2:410–414

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Al-Alem U, Liang J et al (2003) Mice deficient in the X-linked lymphoproliferative disease gene sap exhibit increased susceptibility to murine gammaherpesvirus-68 and hypo-gammaglobulinemia. J Med Virol 71:446–455

    Article  CAS  PubMed  Google Scholar 

  • Yu KO, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol Lett 100:42–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hiroyuki Nishimura (Wakayama Medical University) for fruitful discussions, Ms Fumiko Date, Dr. Izumi Kaneko, Mr. Koichi Kikuchi, Mr. Yuichi Kitagawa, Dr. Yusuke Okubo, Ms Naoko Shibata, Mr. Kaname Uchida, and Ms Naomi Yamaki (Tohoku University) for providing technical assistance for the study at Tohoku University, and Ms Noriko Fujisawa and Ms Emi Yura (Tohoku University) for secretarial assistance. The study at Tohoku University was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan to Hiroshi Furukawa (no. 16790221) and Masao Ono (nos. 16390113, 19390108, and 19659096). This paper is dedicated to the memory of Dr. Hiroaki Komori.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Furukawa.

Additional information

Hiroaki Komori: deceased.

About this article

Cite this article

Furukawa, H., Tohma, S., Kitazawa, H. et al. Role of SLAM-Associated Protein in the Pathogenesis of Autoimmune Diseases and Immunological Disorders. Arch. Immunol. Ther. Exp. 58, 37–44 (2010). https://doi.org/10.1007/s00005-009-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0060-7

Keywords

Navigation