Skip to main content

Advertisement

Log in

Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Chemotherapy-induced cardiovascular toxicity (CICT) is a well-established risk for cancer survivors and causes diseases such as heart failure, arrhythmia, vascular dysfunction, and atherosclerosis. As our knowledge of the precise cardiovascular risks of each chemotherapy agent has improved, it has become clear that genomics is one of the most influential predictors of which patients will experience cardiovascular toxicity. Most recently, GWAS-led, top-down approaches have identified novel genetic variants and their related genes that are statistically related to CICT. Importantly, the advent of human-induced pluripotent stem cell (hiPSC) models provides a system to experimentally test the effect of these genomic findings in vitro, query the underlying mechanisms, and develop novel strategies to mitigate the cardiovascular toxicity liabilities due to these mechanisms. Here we review the cardiovascular toxicities of chemotherapy drugs, discuss how these can be modeled in vitro, and suggest how these models can be used to validate genetic variants that predispose patients to these effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mishra, T., Shokr, M., Ahmed, A., & Afonso, L. (2019). Acute reversible left ventricular systolic dysfunction associated with 5-fluorouracil therapy: a rare and increasingly recognised cardiotoxicity of a commonly used drug. BML Case Reports, 12.

  2. Volkova, M., & Russell 3rd., R. (2011). Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7, 214–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. National Cancer Institute. Statistics. 2019.

  4. Lotrionte, M., Biondi-Zoccai, G., Abbate, A., et al. (2013). Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. The American Journal of Cardiology, 112, 1980–1984.

    CAS  PubMed  Google Scholar 

  5. Magdy, T., & Burridge, P. W. (2018). The future role of pharmacogenomics in anticancer agent-induced cardiovascular toxicity. Pharmacogenomics, 19, 79–82.

    CAS  PubMed  Google Scholar 

  6. Colhoun, H. M., McKeigue, P. M., & Davey, S. G. (2003). Problems of reporting genetic associations with complex outcomes. Lancet, 361, 865–872.

    PubMed  Google Scholar 

  7. Burridge, P. W., Li, Y. F., Matsa, E., et al. (2016). Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nature Medicine, 22, 547–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Maillet, A., Tan, K., Chai, X., et al. (2016). Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Scientific Reports, 6, 25333.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hudson, M. M., Ness, K. K., Gurney, J. G., et al. (2013). Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA, 309, 2371–2381.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. van Dalen, E. C., Raphael, M. F., Caron, H. N., & Kremer, L. C. (2014). Treatment including anthracyclines versus treatment not including anthracyclines for childhood cancer. Cochrane Database of Systematic Reviews, CD006647.

  11. Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 32, 302–314.

    CAS  PubMed  Google Scholar 

  12. Von Hoff, D. D., Layard, M. W., Basa, P., et al. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.

    Google Scholar 

  13. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer, 97, 2869–2879.

    CAS  PubMed  Google Scholar 

  14. Shakir, D. K., & Rasul, K. I. (2009). Chemotherapy induced cardiomyopathy: Pathogenesis, monitoring and management. Journal of Clinical Medical Research, 1, 8–12.

    CAS  Google Scholar 

  15. Bernstein, D., & Burridge, P. (2014). Patient-specific pluripotent stem cells in doxorubicin Cardiotoxicity: a new window into personalized medicine. Progress in Pediatric Cardiology, 37, 23–27.

    PubMed  PubMed Central  Google Scholar 

  16. Lipshultz, S. E., Cochran, T. R., Franco, V. I., & Miller, T. L. (2013). Treatment-related cardiotoxicity in survivors of childhood cancer. Nature Reviews. Clinical Oncology, 10, 697–710.

    CAS  PubMed  Google Scholar 

  17. Mohan, N., Jiang, J., Dokmanovic, M., & Wu, W. J. (2018). Trastuzumab-mediated cardiotoxicity: Current understanding, challenges, and frontiers. Antibody therapeutics, 1, 13–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mohan, N., Shen, Y., Endo, Y., ElZarrad, M. K., & Wu, W. J. (2016). Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human Cardiomyocytes. Molecular Cancer Therapeutics, 15, 1321–1331.

    CAS  PubMed  Google Scholar 

  19. Xu, Z., Cang, S., Yang, T., & DJ, L. (2009). Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematology Review, 1, e4.

    Google Scholar 

  20. Lee, H. A., Hyun, S. A., Byun, B., Chae, J. H., & Kim, K. S. (2018). Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS One, 13, e0195577.

    PubMed  PubMed Central  Google Scholar 

  21. Lacal, P. M., & Graziani, G. (2018). Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacological Research, 136, 97–107.

    CAS  PubMed  Google Scholar 

  22. Touyz, R. M., Herrmann, S. M. S., & Herrmann, J. (2018). Vascular toxicities with VEGF inhibitor therapies-focus on hypertension and arterial thrombotic events. Journal of the American Society of Hypertension, 12, 409–425.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Moslehi, J. J., & Deininger, M. (2015). Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. Journal of Clinical Oncology, 33, 4210–4218.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Giordano, S. H., Booser, D. J., Murray, J. L., et al. (2002). A detailed evaluation of cardiac toxicity: a phase II study of doxorubicin and one- or three-hour-infusion paclitaxel in patients with metastatic breast cancer. Clinical Cancer Research, 8, 3360–3368.

    CAS  PubMed  Google Scholar 

  25. Pentassuglia, L., Timolati, F., Seifriz, F., Abudukadier, K., Suter, T. M., & Zuppinger, C. (2007). Inhibition of ErbB2/neuregulin signaling augments paclitaxel-induced cardiotoxicity in adult ventricular myocytes. Experimental Cell Research, 313, 1588–1601.

    CAS  PubMed  Google Scholar 

  26. Magdy, T., Burmeister, B. T., & Burridge, P. W. (2016). Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: what is missing? Pharmacology & Therapeutics, 168, 113–125.

    CAS  Google Scholar 

  27. El-Tokhy, M. A., Hussein, N. A., Bedewy, A. M., & Barakat, M. R. (2014). XPD gene polymorphisms and the effects of induction chemotherapy in cytogenetically normal de novo acute myeloid leukemia patients. Hematology, 19, 397–403.

    CAS  PubMed  Google Scholar 

  28. Wang, X., Liu, W., Sun, C. L., et al. (2014). Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. Journal of Clinical Oncology, 32, 647–653.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Blanco, J. G., Leisenring, W. M., Gonzalez-Covarrubias, V. M., et al. (2008). Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer, 112, 2789–2795.

    PubMed  Google Scholar 

  30. Chugh, R., Griffith, K. A., Davis, E. J., et al. (2015). Doxorubicin plus the IGF-1R antibody cixutumumab in soft tissue sarcoma: a phase I study using the TITE-CRM model. Annals of Oncology, 26, 1459–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reichwagen, A., Ziepert, M., Kreuz, M., et al. (2015). Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics, 16, 361–372.

    CAS  PubMed  Google Scholar 

  32. Reinbolt, R. E., Patel, R., Pan, X., et al. (2016). Risk factors for anthracycline-associated cardiotoxicity. Support Care Cancer, 24, 2173–2180.

    PubMed  Google Scholar 

  33. Vivenza, D., Feola, M., Garrone, O., Monteverde, M., Merlano, M., & Lo, N. C. (2013). Role of the renin-angiotensin-aldosterone system and the glutathione S-transferase Mu, Pi and Theta gene polymorphisms in cardiotoxicity after anthracycline chemotherapy for breast carcinoma. The International Journal of Biological Markers, 28, e336–e347.

    PubMed  Google Scholar 

  34. Barac, A., Lynce, F., Smith, K. L., et al. (2016). Cardiac function in BRCA1/2 mutation carriers with history of breast cancer treated with anthracyclines. Breast Cancer Research and Treatment, 155, 285–293.

    CAS  PubMed  Google Scholar 

  35. Cascales, A., Sanchez-Vega, B., Navarro, N., et al. (2012). Clinical and genetic determinants of anthracycline-induced cardiac iron accumulation. International Journal of Cardiology, 154, 282–286.

    PubMed  Google Scholar 

  36. Cascales, A., Pastor-Quirante, F., Sanchez-Vega, B., et al. (2013). Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist, 18, 446–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lubieniecka, J. M., Liu, J., Heffner, D., et al. (2012). Single-nucleotide polymorphisms in aldo-keto and carbonyl reductase genes are not associated with acute cardiotoxicity after daunorubicin chemotherapy. Cancer Epidemiology, Biomarkers & Prevention, 21, 2118–2120.

    CAS  Google Scholar 

  38. Pearson, E. J., Nair, A., Daoud, Y., & Blum, J. L. (2017). The incidence of cardiomyopathy in BRCA1 and BRCA2 mutation carriers after anthracycline-based adjuvant chemotherapy. Breast Cancer Research and Treatment, 162, 59–67.

    CAS  PubMed  Google Scholar 

  39. Volkan-Salanci, B., Aksoy, H., Kiratli, P. O., et al. (2012). The relationship between changes in functional cardiac parameters following anthracycline therapy and carbonyl reductase 3 and glutathione S transferase Pi polymorphisms. Journal of Chemotherapy, 24, 285–291.

    CAS  PubMed  Google Scholar 

  40. Vinodhini, M. T., Sneha, S., Nagare, R. P., et al. (2018). Evaluation of a polymorphism in MYBPC3 in patients with anthracycline induced cardiotoxicity. Indian Heart Journal, 70, 319–322.

    PubMed  Google Scholar 

  41. Visscher, H., Ross, C. J., Rassekh, S. R., et al. (2013). Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatric Blood & Cancer, 60, 1375–1381.

    CAS  Google Scholar 

  42. Aminkeng, F., Bhavsar, A. P., Visscher, H., et al. (2015). A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nature Genetics, 47, 1079–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Beauclair, S., Formento, P., Fischel, J. L., et al. (2007). Role of the HER2 [Ile655Val] genetic polymorphism in tumorogenesis and in the risk of trastuzumab-related cardiotoxicity. Annals of Oncology, 18, 1335–1341.

    CAS  PubMed  Google Scholar 

  44. Gomez Pena, C., Davila-Fajardo, C. L., Martinez-Gonzalez, L. J., et al. (2015). Influence of the HER2 Ile655Val polymorphism on trastuzumab-induced cardiotoxicity in HER2-positive breast cancer patients: a meta-analysis. Pharmacogenetics and Genomics, 25, 388–393.

    CAS  PubMed  Google Scholar 

  45. Lemieux, J., Diorio, C., Cote, M. A., et al. (2013). Alcohol and HER2 polymorphisms as risk factor for cardiotoxicity in breast cancer treated with trastuzumab. Anticancer Research, 33, 2569–2576.

    CAS  PubMed  Google Scholar 

  46. Roca, L., Dieras, V., Roche, H., et al. (2013). Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial. Breast Cancer Research and Treatment, 139, 789–800.

    CAS  PubMed  Google Scholar 

  47. Udagawa, C., Nakamura, H., Ohnishi, H., et al. (2018). Whole exome sequencing to identify genetic markers for trastuzumab-induced cardiotoxicity. Cancer Science, 109, 446–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Stanton, S. E., Ward, M. M., Christos, P., et al. (2015). Pro1170 Ala polymorphism in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer, 15, 267.

    PubMed  PubMed Central  Google Scholar 

  49. Boekhout, A. H., Gietema, J. A., Milojkovic Kerklaan, B., et al. (2016). Angiotensin II-receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer: a randomized clinical trial. JAMA Oncology, 2, 1030–1037.

    PubMed  Google Scholar 

  50. Serie, D. J., Crook, J. E., Necela, B. M., et al. (2017). Genome-wide association study of cardiotoxicity in the NCCTG N9831 (Alliance) adjuvant trastuzumab trial. Pharmacogenetics and Genomics, 27, 378–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson, D. C., Corthals, S., Ramos, C., et al. (2008). Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood, 112, 4924–4934.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Bagratuni, T., Kastritis, E., Politou, M., et al. (2013). Clinical and genetic factors associated with venous thromboembolism in myeloma patients treated with lenalidomide-based regimens. American Journal of Hematology, 88, 765–770.

    CAS  PubMed  Google Scholar 

  53. Di Stefano, A. L., Labussiere, M., Lombardi, G., et al. (2015). VEGFA SNP rs2010963 is associated with vascular toxicity in recurrent glioblastomas and longer response to bevacizumab. Journal of Neuro-Oncology, 121, 499–504.

    PubMed  Google Scholar 

  54. Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42, 1–2.

    PubMed  Google Scholar 

  55. Visscher, H., Ross, C. J., Rassekh, S. R., et al. (2012). Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. Journal of Clinical Oncology, 30, 1422–1428.

    PubMed  Google Scholar 

  56. Zakaria, Z. Z., Benslimane, F. M., Nasrallah, G. K., et al. (2018). Using Zebrafish for investigating the molecular mechanisms of drug-induced cardiotoxicity. BioMed Research International, 2018, 1642684.

    PubMed  PubMed Central  Google Scholar 

  57. Han, Y., Zhang, J. P., Qian, J. Q., & Hu, C. Q. (2015). Cardiotoxicity evaluation of anthracyclines in zebrafish (Danio rerio). Journal of Applied Toxicology, 35, 241–252.

    CAS  PubMed  Google Scholar 

  58. Miranda, C. J., Makui, H., Soares, R. J., et al. (2003). Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood, 102, 2574–2580.

    CAS  PubMed  Google Scholar 

  59. Zhang, S., Liu, X., Bawa-Khalfe, T., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.

    PubMed  Google Scholar 

  60. Musunuru, K., Sheikh, F., Gupta, R. M., et al. (2018). Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: a scientific statement from the American Heart Association. Circulation: Genomic Precision Medicine, 11, e000043.

    Google Scholar 

  61. Wu, M., Liu, S., Gao, Y., et al. (2018). Conditional gene knockout and reconstitution in human iPSCs with an inducible Cas9 system. Stem Cell Research, 29, 6–14.

    CAS  PubMed  Google Scholar 

  62. Kamiya, A., Chikada, H., Ida, K., et al. (2018). An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Research, 32, 17–24.

    CAS  PubMed  Google Scholar 

  63. Jiang, Y., Park, P., Hong, S.-M., & Ban, K. (2018). Maturation of Cardiomyocytes derived from human pluripotent stem cells: current strategies and limitations. Molecules and Cells, 41, 613–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arora, S., Yim, E. K. F., & Toh, Y.-C. (2019). Environmental specification of pluripotent stem cell derived endothelial cells toward arterial and venous subtypes. Frontiers in Bioengineering and Biotechnology, 7, 143–143.

    PubMed  PubMed Central  Google Scholar 

  65. Lee, J. H., Protze, S. I., Laksman, Z., Backx, P. H., & Keller, G. M. (2017). Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell, 21, 179–194.e4.

    CAS  PubMed  Google Scholar 

  66. Shafaattalab, S., Lin, E., Christidi, E., et al. (2019). Ibrutinib displays atrial-specific toxicity in human stem cell-derived cardiomyocytes. Stem Cell Reports, 12, 996–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Eder, A., Vollert, I., Hansen, A., & Eschenhagen, T. (2016). Human engineered heart tissue as a model system for drug testing. Advanced Drug Delivery Reviews, 96, 214–224.

    CAS  PubMed  Google Scholar 

  68. Nugraha, B., Buono, M. F., von Boehmer, L., Hoerstrup, S. P., & Emmert, M. Y. (2019). Human cardiac organoids for disease modeling. Clinical Pharmacology and Therapeutics, 105, 79–85.

    PubMed  Google Scholar 

  69. Ross, S. B., Fraser, S. T., & Semsarian, C. (2018). Induced pluripotent stem cell technology and inherited arrhythmia syndromes. Heart Rhythm, 15, 137–144.

    PubMed  Google Scholar 

  70. Liang, P., Sallam, K., Wu, H., et al. (2016). Patient-specific and genome-edited induced pluripotent stem cell-derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome. Journal of the American College of Cardiology, 68, 2086–2096.

    PubMed  PubMed Central  Google Scholar 

  71. Limpitikul, W. B., Dick, I. E., Tester, D. J., et al. (2017). A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circulation Research, 120, 39–48.

    CAS  PubMed  Google Scholar 

  72. Yamamoto, Y., Makiyama, T., Harita, T., et al. (2017). Allele-specific ablation rescues electrophysiological abnormalities in a human iPS cell model of long-QT syndrome with a CALM2 mutation. Human Molecular Genetics, 26, 1670–1677.

    CAS  PubMed  Google Scholar 

  73. Kitani, T., Ong, S. G., Lam, C. K., et al. (2019). Human-induced pluripotent stem cell model of trastuzumab-induced cardiac dysfunction in patients with breast Cancer. Circulation, 139, 2451–2465.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ewer, M. S., & Ewer, S. M. (2015). Cardiotoxicity of anticancer treatments. Nature Reviews. Cardiology, 12, 547–558.

    CAS  PubMed  Google Scholar 

  75. Kurokawa, Y. K., Shang, M. R., Yin, R. T., & George, S. C. (2018). Modeling trastuzumab-related cardiotoxicity in vitro using human stem cell-derived cardiomyocytes. Toxicology Letters, 285, 74–80.

    CAS  PubMed  Google Scholar 

  76. Sharma, A., Burridge, P. W., McKeithan, W. L., et al. (2017). High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Science Translational Medicine, 9.

  77. De Angelis, A., Urbanek, K., Cappetta, D., et al. (2016). Doxorubicin cardiotoxicity and target cells: a broader perspective. Cardio-Oncology, 2, 2.

    PubMed  PubMed Central  Google Scholar 

  78. Verheijen, M., Schrooders, Y., Gmuender, H., et al. (2018). Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicology Letters, 294, 184–192.

    CAS  PubMed  Google Scholar 

  79. Cohen, J. D., Babiarz, J. E., Abrams, R. M., et al. (2011). Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations. Toxicology and Applied Pharmacology, 257, 74–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Posimo, J. M., Unnithan, A. S., Gleixner, A. M., et al. (2014). Viability assays for cells in culture. Journal of Visualized Experiments, e50645.

  81. Hsu, W. T., Huang, C. Y., Yen, C. Y. T., Cheng, A. L., & Hsieh, P. C. H. (2018). The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Theranostics, 8, 3176–3188.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hyman, B. T. (2011). Caspase activation without apoptosis: insight into Abeta initiation of neurodegeneration. Nature Neuroscience, 14, 5–6.

    CAS  PubMed  Google Scholar 

  83. Gintant, G., Fermini, B., Stockbridge, N., & Strauss, D. (2017). The evolving roles of human iPSC-derived cardiomyocytes in drug safety and discovery. Cell Stem Cell, 21, 14–17.

    CAS  PubMed  Google Scholar 

  84. Sala, L., Ward-van Oostwaard, D., Tertoolen, L. G. J., Mummery, C. L., & Bellin, M. (2017). Electrophysiological analysis of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs). JoVE: Journal of visualized experiments.

    Google Scholar 

  85. Jiang, Y., Zhou, Y., Bao, X., et al. (2018). An ultrasensitive calcium reporter system via CRISPR-Cas9-mediated genome editing in human pluripotent stem cells. iScience, 9, 27–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Shinnawi, R., Huber, I., Maizels, L., et al. (2015). Monitoring human-induced pluripotent stem cell-derived Cardiomyocytes with genetically encoded calcium and voltage fluorescent reporters. Stem Cell Reports, 5, 582–596.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Y., Liu, N., He, Y., et al. (2018). Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nature Communications, 9, 1504.

    PubMed  PubMed Central  Google Scholar 

  88. Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317–325.

    CAS  PubMed  Google Scholar 

  89. Hadzijusufovic, E., Albrecht-Schgoer, K., Huber, K., et al. (2017). Nilotinib-induced vasculopathy: identification of vascular endothelial cells as a primary target site. Leukemia, 31, 2388–2397.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lo Sardo, V., Chubukov, P., Ferguson, W., et al. (2018). Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing. Cell, 175, 1796–1810.e20.

    CAS  PubMed  Google Scholar 

  91. Zhang, J., McIntosh, B. E., Wang, B., et al. (2019). A human pluripotent stem cell-based screen for smooth muscle cell differentiation and maturation identifies inhibitors of intimal hyperplasia. Stem Cell Reports, 12, 1269–1281.

    PubMed  PubMed Central  Google Scholar 

  92. Cheung, C., Bernardo, A. S., Trotter, M. W., Pedersen, R. A., & Sinha, S. (2012). Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nature Biotechnology, 30, 165–173.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gover-Proaktor, A., Granot, G., Pasmanik-Chor, M., et al. (2019). Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells. Leukemia & Lymphoma, 60, 189–199.

    CAS  Google Scholar 

  94. Sa, S., Gu, M., Chappell, J., et al. (2017). Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity. American Journal of Respiratory and Critical Care Medicine, 195, 930–941.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Khaddaj Mallat, R., Mathew John, C., Kendrick, D. J., & Braun, A. P. (2017). The vascular endothelium: a regulator of arterial tone and interface for the immune system. Critical Reviews in Clinical Laboratory Sciences, 54, 458–470.

    CAS  PubMed  Google Scholar 

  96. Tykocki, N. R., Boerman, E. M., & Jackson, W. F. (2017). Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Comprehensive Physiology, 7, 485–581.

    PubMed  PubMed Central  Google Scholar 

  97. Safar, M. E. (2018). Arterial stiffness as a risk factor for clinical hypertension. Nature Reviews. Cardiology, 15, 97–105.

    PubMed  Google Scholar 

  98. Zhao, Y., Vanhoutte, P. M., & Leung, S. W. (2015). Vascular nitric oxide: beyond eNOS. Journal of Pharmacological Sciences, 129, 83–94.

    CAS  PubMed  Google Scholar 

  99. Namin, S. M., Nofallah, S., Joshi, M. S., Kavallieratos, K., & Tsoukias, N. M. (2013). Kinetic analysis of DAF-FM activation by NO: toward calibration of a NO-sensitive fluorescent dye. Nitric Oxide, 28, 39–46.

    CAS  PubMed  Google Scholar 

  100. Verdon, C. P., Burton, B. A., & Prior, R. L. (1995). Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Analytical Biochemistry, 224, 502–508.

    CAS  PubMed  Google Scholar 

  101. Biel, N. M., Santostefano, K. E., DiVita, B. B., et al. (2015). Vascular smooth muscle cells from hypertensive patient-derived induced pluripotent stem cells to advance hypertension pharmacogenomics. Stem Cells Translational Medicine, 4, 1380–1390.

    PubMed  PubMed Central  Google Scholar 

  102. Patsch, C., Challet-Meylan, L., Thoma, E. C., et al. (2015). Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nature Cell Biology, 17, 994–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kinnear, C., Chang, W. Y., Khattak, S., et al. (2013). Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells. Stem Cells Translational Medicine, 2, 2–15.

    CAS  PubMed  Google Scholar 

  104. Rennier, K., & Ji, J. Y. (2013). Effect of shear stress and substrate on endothelial DAPK expression, caspase activity, and apoptosis. BMC Research Notes, 6, 10.

    PubMed  PubMed Central  Google Scholar 

  105. Van Kruchten, R., Cosemans, J. M., & Heemskerk, J. W. (2012). Measurement of whole blood thrombus formation using parallel-plate flow chambers—a practical guide. Platelets, 23, 229–242.

    PubMed  Google Scholar 

  106. Tsai, M., Kita, A., Leach, J., et al. (2012). In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. The Journal of Clinical Investigation, 122, 408–418.

    CAS  PubMed  Google Scholar 

  107. Jain, A., Barrile, R., van der Meer, A. D., et al. (2017). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clinical Pharmacology and Therapeutics, 103, 332–340.

    PubMed  Google Scholar 

  108. Jain, A., Barrile, R., van der Meer, A. D., et al. (2018). Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics. Clinical Pharmacology and Therapeutics, 103, 332–340.

    CAS  PubMed  Google Scholar 

  109. Jain, A., Graveline, A., Waterhouse, A., Vernet, A., Flaumenhaft, R., & Ingber, D. E. (2016). A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nature Communications, 7, 10176.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mathur, T., Singh, K. A., Pandian, N. K. R., et al. (2019). Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. Lab on a Chip.

  111. Blyszczuk, P. (2019). Myocarditis in humans and in experimental animal models. Frontiers in cardiovascular medicine, 6, 64.

    PubMed  PubMed Central  Google Scholar 

  112. Sharma, A., Marceau, C., Hamaguchi, R., et al. (2014). Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus B3-induced myocarditis and antiviral drug screening platform. Circulation Research, 115, 556–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Semper, H., Muehlberg, F., Schulz-Menger, J., Allewelt, M., & Grohe, C. (2016). Drug-induced myocarditis after nivolumab treatment in a patient with PDL1-negative squamous cell carcinoma of the lung. Lung Cancer, 99, 117–119.

    CAS  PubMed  Google Scholar 

  114. Thomas, C. A., Tejwani, L., Trujillo, C. A., et al. (2017). Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell, 21, 319–331.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Joshi, K., Elso, C., Motazedian, A., et al. (2019). Induced pluripotent stem cell macrophages present antigen to proinsulin-specific T cell receptors from donor-matched islet-infiltrating T cells in type 1 diabetes. Diabetologia.

  116. Montel-Hagen A, Crooks GMJEh. From pluripotent stem cells to T cells. 2018.

    Google Scholar 

  117. Bernarreggi, D., Pouyanfard, S., & Kaufman, D. S. (2019). Development of innate immune cells from human pluripotent stem cells. Experimental Hematology, 71, 13–23.

    CAS  PubMed Central  Google Scholar 

  118. Warren, C. R., O'Sullivan, J. F., Friesen, M., et al. (2017). Induced pluripotent stem cell differentiation enables functional validation of GWAS variants in metabolic disease. Cell Stem Cell, 20, 547–557 e7.

    CAS  PubMed  Google Scholar 

  119. Pashos, E. E., Park, Y., Wang, X., et al. (2017). Large, diverse population cohorts of hiPSCs and derived hepatocyte-like cells reveal functional genetic variation at blood lipid-associated loci. Cell Stem Cell, 20, 558–570.e10.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Knowles, D. A., Burrows, C. K., Blischak, J. D., et al. (2018). Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes. Elife, 7.

  121. Stranger, B. E., Forrest, M. S., Dunning, M., et al. (2007). Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science, 315, 848–853.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Stranger, B. E., Montgomery, S. B., Dimas, A. S., et al. (2012). Patterns of cis regulatory variation in diverse human populations. PLoS Genetics, 8, e1002639.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Stranger, B. E., Nica, A. C., Forrest, M. S., et al. (2007). Population genomics of human gene expression. Nature Genetics, 39, 1217–1224.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Qiu, W., Rogers, A. J., Damask, A., et al. (2014). Pharmacogenomics: novel loci identification via integrating gene differential analysis and eQTL analysis. Human Molecular Genetics, 23, 5017–5024.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Powell, J. E., Henders, A. K., McRae, A. F., et al. (2012). Genetic control of gene expression in whole blood and lymphoblastoid cell lines is largely independent. Genome Research, 22, 456–466.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by NIH NCI grant R01 CA220002, American Heart Association Transformational Project Award 18TPA34230105 and the Fondation Leducq (P.W.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Burridge.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Ana Barac oversaw the review of this article.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, E.A., Magdy, T. & Burridge, P.W. Human In Vitro Models for Assessing the Genomic Basis of Chemotherapy-Induced Cardiovascular Toxicity. J. of Cardiovasc. Trans. Res. 13, 377–389 (2020). https://doi.org/10.1007/s12265-020-09962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-09962-x

Keywords

Navigation