Skip to main content

Advertisement

Log in

Immediate weight bearing as tolerated (WBAT) correlates with a decreased length of stay post intramedullary fixation for subtrochanteric fractures: a multicenter retrospective cohort study

  • Original Article
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Subtrochanteric femur fractures associate with a relatively high complication rate and are traditionally treated operatively with a period of limited weight bearing. Transitioning from extramedullary to intramedullary implants, there are increasing biomechanical and clinical data to support early weight bearing. This multicenter retrospective study examines the effect of postoperative weight bearing as tolerated (WBAT) for subtrochanteric femur fractures. We hypothesize that WBAT will result in a decreased length of stay (LOS) without increasing the incidence of re-operation.

Methods

This study assesses total LOS and postoperative LOS after intramedullary fixation for subtrochanteric fractures between postoperative weight bearing protocols across 6 level I trauma centers (n = 441). Analysis techniques consisted of multivariable linear regression and nonparametric comparative tests. Additional subanalyses were performed, targeting mechanism of injury (MOI), Winquist–Hansen fracture comminution, 20-year age strata, and injury severity score (ISS).

Results

Total LOS was shorter in WBAT protocol within the overall sample (7.4 vs 9.7 days; p < 0.01). Rates of re-operation were similar between the two groups (10.6% vs 10.5%; p = 0.99). Stratified analysis identified patients between ages 41–80, WH comminution 2–3, high MOI, and ISS between 6–15 and 21–25 to demonstrate a significant reduction in LOS as a response to WBAT.

Conclusion

An immediate postoperative weight bearing as tolerated protocol in patients with subtrochanteric fractures reduced length of hospital stay with no significant difference in reoperation and complication rates. If no contraindication exists, immediate weight bearing as tolerated should be considered for patients with subtrochanteric femur fractures treated with statically locked intramedullary nails.

Level of evidence

Therapeutic Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nieves JW, Bilezikian JP, Lane JM et al (2010) Fragility fractures of the hip and femur: incidence and patient characteristics. Osteoporos Int 21:399–408. https://doi.org/10.1007/s00198-009-0962-6

    Article  CAS  PubMed  Google Scholar 

  2. Ekström W, Németh G, Samnegård E et al (2009) Quality of life after a subtrochanteric fracture. Injury 40:371–376. https://doi.org/10.1016/j.injury.2008.09.010

    Article  PubMed  Google Scholar 

  3. Waddell JP (1979) Subtrochanteric fractures of the femur: a review of 130 patients. J Trauma 19:582–592

    Article  CAS  PubMed  Google Scholar 

  4. Boyd HB, Lipinski SW (1957) Nonunion of trochanteric and subtrochanteric fractures. Surg Gynecol Obstet 104:463–470

    CAS  PubMed  Google Scholar 

  5. Erez O, Dougherty PJ (2012) Early complications associated with cephalomedullary nail for intertrochanteric hip fractures. J Trauma Acute Care Surg 72:E101–E105

    Article  PubMed  Google Scholar 

  6. Haidukewych GJ, Berry DJ (2004) Nonunion of fractures of the subtrochanteric region of the femur. Clin Orthop Relat Res 32:185–188

    Article  Google Scholar 

  7. Kinast C, Bolhofner BR, Mast JW, Ganz R (1989) Subtrochanteric fractures of the femur. Results of treatment with the 95 degrees condylar blade-plate. Clin Orthop Relat Res 238:122–130

    Article  Google Scholar 

  8. Anglen JO, Weinstein JN, American Board of Orthopaedic Surgery Research Committee (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. J Bone Jt Surgery-American 90:700–707. https://doi.org/10.2106/JBJS.G.00517

    Article  Google Scholar 

  9. Wiss DA, Brien WW (1992) Subtrochanteric fractures of the femur: results of treatment by interlocking nailing. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-199210000-00032

    Article  PubMed  Google Scholar 

  10. Beingessner DM, Scolaro JA, Orec RJ et al (2013) Open reduction and intramedullary stabilisation of subtrochanteric femur fractures: a retrospective study of 56 cases. Injury 44:1910–1915. https://doi.org/10.1016/j.injury.2013.08.013

    Article  PubMed  Google Scholar 

  11. Afsari A, Liporace F, Lindvall E et al (2010) Clamp-assisted reduction of high subtrochanteric fractures of the femur. J Bone Jt Surg Am 92:217–225. https://doi.org/10.2106/JBJS.J.00158

    Article  Google Scholar 

  12. Celebi L, Can M, Muratli HH et al (2006) Indirect reduction and biological internal fixation of comminuted subtrochanteric fractures of the femur. Injury 37:740–750. https://doi.org/10.1016/j.injury.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  13. Riehl JT, Koval KJ, Langford JR et al (2014) Intramedullary nailing of subtrochanteric fractures–does malreduction matter? Bull Hosp Jt Dis 72:159–163

    Google Scholar 

  14. Koval KJ, Friend KD, Aharonoff GB, Zukerman JD (1996) Weight bearing after hip fracture: a prospective series of 596 geriatric hip fracture patients. J Orthop Trauma 10:526–530

    Article  CAS  PubMed  Google Scholar 

  15. Koval KJ, Chen AL, Aharonoff GB et al (2004) Clinical pathway for hip fractures in the elderly: the Hospital for Joint Diseases experience. Clin Orthop Relat Res 425:72–81

    Article  Google Scholar 

  16. Tayrose G, Newman D, Slover J et al (2013) Rapid mobilization decreases length-of-stay in joint replacement patients. Bull Hosp Jt Dis 71:222–226

    Google Scholar 

  17. Wang D, Teddy PJ, Henderson NJ et al (2001) Mobilization of patients after spinal surgery for acute spinal cord injury. Spine (phila.pa.1976) 26:2278–2282

    Article  CAS  Google Scholar 

  18. Brumback RJ, Toal TR, Murphy-Zane MS et al (1999) Immediate weight-bearing after treatment of a comminuted fracture of the femoral shaft with a statically locked intramedullary nail. J Bone Joint Surg Am 81:1538–1544

    Article  CAS  PubMed  Google Scholar 

  19. Bailón-Plaza A, van der Meulen MCH (2003) Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36:1069–1077

    Article  PubMed  Google Scholar 

  20. Epstein NE (2014) A review article on the benefits of early mobilization following spinal surgery and other medical/surgical procedures. Surg Neurol Int 5:S66–73. https://doi.org/10.4103/2152-7806.130674

    Article  PubMed Central  PubMed  Google Scholar 

  21. Smeeing DPJ, Houwert RM, Briet JP et al (2015) Weight-Bearing and Mobilization in the Postoperative Care of Ankle Fractures: a systematic review and meta-analysis of randomized controlled trials and cohort studies. PLoS ONE 10:e0118320. https://doi.org/10.1371/journal.pone.0118320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kubiak EN, Beebe MJ, North K et al (2013) Early Weight Bearing After Lower Extremity Fractures in Adults. J Am Acad Orthop Surg 21:727–738. https://doi.org/10.5435/JAAOS-21-12-727

    Article  PubMed  Google Scholar 

  23. Cunningham, Brian P.; Zaman, Saif U.; Roberts, Justin; Ortega, Gilbert; Rhorer, Anthony S.; Basmaijian, Hrayr G.; McLemore, Ryan; Parikh, Harsh R.; Miller B (2017) Immediate Weight Bearing as Tolerated Leads to Decreased Length of Stay Compared to Limited Weight Bearing after Intramedullary Fixation for Subtrochanteric Femur Fractures. Orthop Trauma Assoc June:

  24. Marsh JL, Slongo TF, Agel J et al (2007) Fracture and dislocation classification compendium - 2007: orthopaedic trauma association classification, database and outcomes committee. J Orthop Trauma 21:S1–133. https://doi.org/10.1097/00005131-200711101-00001

    Article  CAS  PubMed  Google Scholar 

  25. Winquist RA, Hansen ST (1980) Comminuted fractures of the femoral shaft treated by intramedullary nailing. Orthop Clin North Am 11:633–648

    Article  CAS  PubMed  Google Scholar 

  26. Forward DP, Doro CJ, OToole RV et al (2012) A Biomechanical Comparison of a Locking Plate, a Nail, and a 95° Angled Blade Plate for Fixation of Subtrochanteric Femoral Fractures. J Orthop Trauma 26:334–340. https://doi.org/10.1097/BOT.0b013e3182254ea3

    Article  PubMed  Google Scholar 

  27. Joglekar SB, Lindvall EM, Martirosian A (2015) Contemporary management of subtrochanteric fractures. Orthop Clin North Am 46:21–35. https://doi.org/10.1016/j.ocl.2014.09.001

    Article  PubMed  Google Scholar 

  28. Kraemer WJ, Hearn TC, Powell JN, Mahomed N (1996) Fixation of segmental subtrochanteric fractures. A biomechanical study. Clin Orthop Relat Res 332:71–79

    Article  Google Scholar 

  29. Ekström W, Karlsson-Thur C, Larsson S et al (2007) Functional outcome in treatment of unstable trochanteric and subtrochanteric fractures with the proximal femoral nail and the medoff sliding plate. J Orthop Trauma 21:18–25. https://doi.org/10.1097/BOT.0b013e31802b41cf

    Article  PubMed  Google Scholar 

  30. Robinson CM, Houshian S, Khan LAK (2005) Trochanteric-Entry long cephalomedullary nailing of subtrochanteric fractures caused by low-energy trauma. J Bone Jt Surg 87:2217. https://doi.org/10.2106/JBJS.D.02898

    Article  Google Scholar 

  31. Zhou Z-B, Chen S, Gao Y-S et al (2015) Subtrochanteric femur fracture treated by intramedullary fixation. Chinese J Traumatol 18:336–341. https://doi.org/10.1016/j.cjtee.2015.11.011

    Article  Google Scholar 

  32. French BG, Tornetta P (1998) Use of an interlocked cephalomedullary nail for subtrochanteric fracture stabilization. Clin Orthop Relat Res 348:95–100

    Article  Google Scholar 

  33. Miedel R, Törnkvist H, Ponzer S et al (2011) Musculoskeletal function and quality of life in elderly patients after a subtrochanteric femoral fracture treated with a cephalomedullary nail. J Orthop Trauma 25:208–213. https://doi.org/10.1097/BOT.0b013e3181eaaf52

    Article  PubMed  Google Scholar 

  34. Egol KA, Dolan R, Koval KJ (2000) Functional outcome of surgery for fractures of the ankle. a prospective, randomised comparison of management in a cast or a functional brace. J Bone Joint Surg Br 82:246–249

    Article  CAS  PubMed  Google Scholar 

  35. Cunningham BP, Dugarte A, McCreary D et al (2017) Immediate weight bearing after operative treatment of bimalleolar and trimalleolar ankle fractures: faster return to work for patients with non-sedentary occupations. Minneapolis, MN

    Google Scholar 

  36. Firoozabadi R, Harnden E, Krieg JC (2015) Immediate weight-bearing after ankle fracture fixation. Adv Orthop 2015:491976. https://doi.org/10.1155/2015/491976

    Article  PubMed Central  PubMed  Google Scholar 

  37. O’Sullivan ME, Bronk JT, Chao EY, Kelly PJ (1994) Experimental study of the effect of weight bearing on fracture healing in the canine tibia. Clin Orthop Relat Res 302:273–283

    Google Scholar 

  38. Simanski CJP, Maegele MG, Lefering R et al (2006) Functional treatment and early weightbearing after an Ankle fracture. J Orthop Trauma 20:108–114. https://doi.org/10.1097/01.bot.0000197701.96954.8c

    Article  PubMed  Google Scholar 

  39. Heare A, Kramer N, Salib C, Mauffrey C (2017) Early versus late weight-bearing protocols for surgically managed posterior wall acetabular fractures. Orthopedics 40:e652–e657. https://doi.org/10.3928/01477447-20170503-02

    Article  PubMed  Google Scholar 

  40. Westerman RW, Hull P, Hendry RG, Cooper J (2008) The physiological cost of restricted weight bearing. Injury 39:725–727. https://doi.org/10.1016/j.injury.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  41. Dehghan N, McKee MD, Jenkinson RJ et al (2016) Early weightbearing and range of motion versus non-weightbearing and immobilization after open reduction and internal fixation of unstable ankle fractures. J Orthop Trauma 30:345–352. https://doi.org/10.1097/BOT.0000000000000572

    Article  PubMed  Google Scholar 

  42. Arazi M, Oğün TC, Oktar MN et al (2001) Early weight-bearing after statically locked reamed intramedullary nailing of comminuted femoral fractures: is it a safe procedure? J Trauma 50:711–716

    Article  CAS  PubMed  Google Scholar 

  43. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38:S3–S10. https://doi.org/10.1016/j.injury.2007.02.005

    Article  PubMed  Google Scholar 

  44. Koval KJ, Sala DA, Kummer FJ, Zuckerman JD (1998) Postoperative weight-bearing after a fracture of the femoral neck or an intertrochanteric fracture. J Bone Joint Surg Am 80:352–356

    Article  CAS  PubMed  Google Scholar 

  45. Hustedt JW, Blizzard DJ, Baumgaertner MR et al (2012) Current advances in training orthopaedic patients to comply with partial weight-bearing instructions. Yale J Biol Med 85:119–125

    PubMed Central  PubMed  Google Scholar 

Download references

Funding

No funding was supplied for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Cunningham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunningham, B.P., Ali, A., Parikh, H.R. et al. Immediate weight bearing as tolerated (WBAT) correlates with a decreased length of stay post intramedullary fixation for subtrochanteric fractures: a multicenter retrospective cohort study. Eur J Orthop Surg Traumatol 31, 235–243 (2021). https://doi.org/10.1007/s00590-020-02759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-020-02759-3

Keywords

Navigation