Skip to main content

Advertisement

Log in

Current state of virtual reality simulation in robotic surgery training: a review

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System.

Materials and methods

A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform.

Results

The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review.

Conclusions

There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kenngott HG, Fischer L, Nickel F, Rom J, Rassweiler J, Müller-Stich BP (2012) Status of robotic assistance—a less traumatic and more accurate minimally invasive surgery? Langenbecks Arch Surg 397:333–341

    Article  CAS  PubMed  Google Scholar 

  2. Callery MP, Strasberg SM, Soper NJ (1996) Complications of laparoscopic general surgery. Gastrointest Endosc Clin N Am 6(2):423–444

    CAS  PubMed  Google Scholar 

  3. Scott DJ, Dunnington GL (2008) The new ACS/APDS skills curriculum: moving the learning curve out of the operating room. J Gastrointest Surg 12:213–221

    Article  PubMed  Google Scholar 

  4. Sun LW, Van Meer F, Bailly Y, Thakre AA (2007) Advanced da Vinci surgical system simulator for surgeon training and operation planning. Int J Med Robot 3(3):245–251

    Article  CAS  PubMed  Google Scholar 

  5. Albani JM, Lee DI (2007) Virtual reality-assisted robotic surgery simulation. J Endourol 21:285–287

    Article  PubMed  Google Scholar 

  6. Smith R, Truong M, Perez M (2015) Comparative analysis of the functionality of simulators of the da Vinci surgical robot. Surg Endosc 29(4):972–983

    Article  PubMed  Google Scholar 

  7. Raza SJ, Froghi S, Chowriappa A, Ahmed K, Field E, Stegemann AP, Rehman S, Sharif M, Shi Y, Wilding GE, Kesavadas T, Kaouk J, Guru K (2014) Construct validation of the key components of fundamental skills of robotic surgery (FSRS) curriculum—a multi-institution prospective study. J Surg Educ 71:316–324

    Article  PubMed  Google Scholar 

  8. Seixas-mikelus SA, Kesavadas T, Srimathveeravalli G, Chandrasekhar R, Wilding GE, Guru KA (2010) Face validation of a novel robotic surgical simulator. Urology 76:357–360

    Article  PubMed  Google Scholar 

  9. Seixas-Mikelus S, Stegemann AP, Kesavadas T, Srimathveeravalli G, Sathyaseelan G, Chandrasekhar R, Wilding GE, Peabody JO, Guru K (2011) Content validation of a novel robotic surgical simulator. BJU Int 107:1130–1135

    Article  PubMed  Google Scholar 

  10. Chowriappa AJ, Shi Y, Raza SJ, Ahmed K, Stegemann A, Wilding G, Kaouk J, Peabody JO, Menon M, Hassett JM, Kesavadas T, Guru K (2013) Development and validation of a composite scoring system for robot-assisted surgical training—the Robotic Skills Assessment Score. J Surg Res 185:561–569

    Article  PubMed  Google Scholar 

  11. Stegemann AP, Ahmed K, Syed JR, Rehman S, Ghani K, Autorino R, Sharif M, Rao A, Shi Y, Wilding GE, Hassett JM, Chowriappa A, Kesavadas T, Peabody JO, Menon M, Kaouk J, Guru KA (2013) Fundamental skills of robotic surgery: a multi-institutional randomized controlled trial for validation of a simulation-based curriculum. Urology 81:767–774

    Article  PubMed  Google Scholar 

  12. Kenney P, Wszolek MF, Gould JJ, Libertino J, Moinzadeh A (2009) Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology 73:1288–1292

    Article  PubMed  Google Scholar 

  13. Korets R, Mues AC, Graversen J, Gupta M, Benson MC, Cooper KL, Landman J, Badani KK (2011) Validating the use of the Mimic dV-trainer for robotic surgery skill acquisition among urology residents. Urology 78:1326–1330

    Article  PubMed  Google Scholar 

  14. Lee JY, Mucksavage P, Kerbl DC, Huynh VB, Etafy M, McDougall EM (2012) Validation study of a virtual reality robotic simulator-role as an assessment tool? J Urol 187:998–1002

    Article  PubMed  Google Scholar 

  15. Lendvay T, Casale P, Sweet R, Peters C (2008) VR robotic surgery: randomized blinded study of the dV-trainer robotic simulator. Stud Health Technol Inform 132:242–244

    PubMed  Google Scholar 

  16. Liss M, Abdelshehid C, Quach S, Lusch A, Graversen J, Landman J, McDougall EM (2012) Validation, correlation, and comparison of the da Vinci trainer and the daVinci surgical skills simulator using the Mimic software for urologic robotic surgical education. J Endourol 26:1629–1634

    Article  PubMed  Google Scholar 

  17. Perrenot C, Perez M, Tran N, Jehl J, Felblinger J, Bresler L, Hubert J (2012) The virtual reality simulator dV-Trainer(®) is a valid assessment tool for robotic surgical skills. Surg Endosc 26:2587–2593

    Article  PubMed  Google Scholar 

  18. Schreuder HW, Persson JE, Wolswijk RG, Ihse I, Schijven MP, Verheijen RH (2014) Validation of a novel virtual reality simulator for robotic surgery. Sci World J. doi:10.1155/2014/507076

    Google Scholar 

  19. Lerner MA, Ayalew M (2010) Does training on a virtual reality robotic simulator improve performance on the da Vinci surgical system? J Endourol 24:467–472

    Article  PubMed  Google Scholar 

  20. Sethi AS, Peine WJ, Ph D, Mohammadi Y, Sundaram CP (2009) Validation of a novel virtual reality robotic simulator. J Endourol 23:503–508

    Article  PubMed  Google Scholar 

  21. Cho JS, Hahn KY, Kwak JM, Kim J, Baek SJ, Shin JW, Kim SH (2013) Virtual reality training improves da Vinci performance: a prospective trial. J Laparoendosc Adv Surg Tech A 23:992–998

    Article  PubMed  Google Scholar 

  22. Kang SG, Ryu BJ, Yang KS, Ko YH, Cho S, Kang SH, Patel VR, Cheon J (2014) An effective repetitive training schedule to achieve skill proficiency using a novel robotic virtual reality simulator. J Surg Educ 72(3):369–376

    Article  PubMed  Google Scholar 

  23. Kang SG, Cho S, Kang SH, Haidar AM, Samavedi S (2014) The tube 3 module designed for practicing vesicourethral anastomosis in a virtual reality robotic simulator: determination of face, content, and construct validity. Urology 84:345–350

    Article  PubMed  Google Scholar 

  24. Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, Khorsand D, Andros J, Hannaford B, Satava RM (2013) Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg 216:1181–1192

    Article  PubMed  PubMed Central  Google Scholar 

  25. Alzahrani T, Haddad R, Alkhayal A, Delisle J, Drudi L, Gotlieb W, Fraser S, Bergman S, Bladou F, Andonian S, Anidjar M (2013) Validation of the da Vinci surgical skill simulator across three surgical disciplines: a pilot study. Can Urol Assoc 7(7–8):E520–E529

    Google Scholar 

  26. Connolly M, Seligman J, Kastenmeier A, Goldblatt M, Gould JC (2014) Validation of a virtual reality-based robotic surgical skills curriculum. Surg Endosc 28:1691–1694

    Article  PubMed  Google Scholar 

  27. Finnegan KT, Meraney AM, Staff I, Shichman SJ (2012) da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology 80:330–335

    Article  PubMed  Google Scholar 

  28. Hung AJ, Jayaratna IS, Teruya K, Desai MM, Gill IS, Goh AC (2013) Comparative assessment of three standardized robotic surgery training methods. BJU Int 112(6):864–871

    Article  PubMed  Google Scholar 

  29. Hung AJ, Zehnder P, Patil MB, Cai J, Ng CK, Aron M, Gill IS, Desai MM (2011) Face, content and construct validity of a novel robotic surgery simulator. J Urol 186:1019–1025

    Article  PubMed  Google Scholar 

  30. Kelly DC, Margules AC, Kundavaram CR, Narins H, Gomella LG, Trabulsi EJ, Lallas CD (2012) Face, content, and construct validation of the da Vinci skills simulator. Urology 79:1068–1072

    Article  PubMed  Google Scholar 

  31. Lyons C, Goldfarb D, Jones SL, Badhiwala N, Miles B, Link R, Dunkin BJ (2013) Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg Endosc 27:2020–2030

    Article  PubMed  Google Scholar 

  32. Culligan P, Gurshumov E, Lewis C, Priestley J, Komar J, Salamon C (2014) Predictive validity of a training protocol using a robotic surgery simulator. Female Pelvic Med Reconstr Surg 20:48–51

    Article  PubMed  Google Scholar 

  33. Hung AJ, Patil MB, Zehnder P, Cai J, Ng CK, Aron M, Gill IS, Desai MM (2012) Concurrent and predictive validation of a novel robotic surgery simulator: a prospective, randomized study. J Urol 187:630–637

    Article  PubMed  Google Scholar 

  34. Bric J, Connolly M, Kastenmeier A, Goldblatt M, Gould JC (2014) Proficiency training on a virtual reality robotic surgical skills curriculum. Surg Endosc 28:3343–3348

    Article  PubMed  Google Scholar 

  35. Foell K, Finelli A, Yasufuku K, Bernardini MQ, Waddell TK, Pace KT, Honey RJ, Lee JY (2013) Robotic surgery basic skills training: evaluation of a pilot multidisciplinary simulation-based curriculum. Can Urol Assoc 7:430–434

    Google Scholar 

  36. Gomez PP, Willis RE, Van Sickle KR (2014) Development of a virtual reality robotic surgical curriculum using the da Vinci Si surgical system. Surg Endosc. PMID: 25361648

  37. Vaccaro CM, Crisp CC, Fellner ÞAN, Jackson C, Kleeman SD, Pavelka J (2013) Robotic virtual reality simulation plus standard robotic orientation versus standard robotic orientation alone : a randomized controlled trial. Female Pelvic Med Reconstr Surg 19(5):266–270

    Article  PubMed  Google Scholar 

  38. Zhang N, Sumer BD (2013) Transoral robotic surgery: simulation-based standardized training. JAMA Otolaryngol Head Neck Surg 139:1111–1117

    Article  PubMed  Google Scholar 

  39. Lallas CD (2012) Robotic surgery training with commercially available simulation systems in 2011: a current review and practice pattern survey from the society of urologic robotic surgeons. J Endourol Endourol Soc 26:283–293

    Article  Google Scholar 

  40. Gavazzi A, Bahsoun AN, Van Haute W, Ahmed K, Elhage O, Jaye P, Khan MS, Dasgupta P (2011) Face, content and construct validity of a virtual reality simulator for robotic surgery (SEP robot). Ann R Coll Surg Engl 93:152–156

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shamim Khan M, Ahmed K, Gavazzi A, Gohil R, Thomas L, Poulsen J, Ahmed M, Jaye P, Dasgupta P (2013) Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity. BJU Int 111:518–523

    Article  PubMed  Google Scholar 

  42. Balasundaram I, Darzi A (2008) Short-phase training on a virtual reality simulator improves technical performance in tele-robotic surgery. Int J Med Robotics Comput Assist Surg 4(2):139–145

    Article  Google Scholar 

  43. SimSurgery AS. SEP robot. http://www.simsurgery.com/robot.html. Accessed 17 Feb 2015

  44. Abboudi H, Khan MS, Aboumarzouk O, Guru K, Challacombe B, Dasgupta P, Ahmed K (2013) Current status of validation for robotic surgery simulators—a systematic review. BJU Int 111:194–205

    Article  PubMed  Google Scholar 

  45. Kumar A, Smith R, Patel VR (2015) Current status of robotic simulators in acquisition of robotic surgical skills. Curr Opin Urol 25:168–174

    Article  PubMed  Google Scholar 

  46. Liu M, Curet M (2015) A review of training research and virtual reality simulators for the da Vinci surgical system. Teaching and learning in medicine. Teach Learn Med 27(1):37–41

    Article  Google Scholar 

  47. Tergas AI, Sheth SB, Green IC, Giuntoli RL, Winder AD, Fader AN (2013) A pilot study of surgical training using a virtual robotic surgery simulator. JSLS 17:219–226

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rehman S, Raza SJ, Stegemann AP, Zeeck K, Din R, Llewellyn A, Dio L, Trznadel M, Seo YW, Chowriappa AJ, Kesavadas T, Ahmed K, Guru K (2013) Simulation-based robot-assisted surgical training: a health economic evaluation. Int J Surg 11:841–846

    Article  PubMed  Google Scholar 

  49. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain N, Tesfay ST, Scott DJ (2012) Proficiency-based training for robotic surgery: construct validity, workload, and expert levels for nine inanimate exercises. Surg Endosc 26:1516–1521

    Article  PubMed  Google Scholar 

  50. Dulan G, Rege RV, Hogg DC, Gilberg-Fisher KM, Arain N, Tesfay ST, Scott DJ (2012) Developing a comprehensive, proficiency-based training program for robotic surgery. Surgery 152:477–488

    Article  PubMed  Google Scholar 

  51. Schreuder HW, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RH (2012) Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG 119:137–149

    Article  CAS  PubMed  Google Scholar 

  52. Brinkman WM, Luursema JM, Kengen B, Schout BM, Witjes JA, Bekkers RL (2013) Da vinci skills simulator for assessing learning curve and criterion-based training of robotic basic skills. Urology 81:562–566

    Article  PubMed  Google Scholar 

  53. Kang SG, Yang KS, Ko YH, Kang SH, Park HS, Lee JG, Kim JJ, Cheon J (2012) A study on the learning curve of the robotic virtual reality simulator. J Laparoendosc Adv Surg Tech A 22:438–442

    Article  PubMed  Google Scholar 

  54. Smith R, Patel V, Satava R (2014) Fundamentals of robotic surgery: a course of basic robotic surgery skills based upon a 14-society consensus template of outcomes measures and curriculum development. Int J Med Robot 10(3):379–384

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon C. Gould.

Ethics declarations

Disclosures

Dr. Gould is a consultant for Torax Medical. Mr. Bric, Lumbard, and Frelich have no conflicts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bric, J.D., Lumbard, D.C., Frelich, M.J. et al. Current state of virtual reality simulation in robotic surgery training: a review. Surg Endosc 30, 2169–2178 (2016). https://doi.org/10.1007/s00464-015-4517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-015-4517-y

Keywords

Navigation