Skip to main content
Log in

Cell proliferation, cell death and aging

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

An integrated view of the processes which most likely play a critical role in the aging process at the cellular level is proposed. Cells are continuously exposed to a variety of internal and external Stressors, potentially dangerous for the maintenance of the functional integrity of the cell (UV and gamma radiation, heat, oxygen free radicals, glucose, bacteria, viruses). In the course of evolution a number of mechanisms [DNA repair, production of heat shock and other stress proteins, enzymatic and non-enzymatic antioxidant defence systems, poly(ADP-ribose) polymerase activation] have emerged which allow the cell to cope with such a variety of potentially harmful agents. These mechanisms are in fact interconnected and constitute a network of cellular defence systems. It is suggested that they play a physiological role, being involved in the control of gene expression. A failure of these mechanisms does not allow the cell to maintain homeostasis and has profound consequences as far as two of the major programs of the cell are concerned, i.e. cell proliferation and cell death. Recent data suggesting that these are two physiologically active phenomena tightly linked and regulated are examined. Thus, activation of cell cycle related genes and active inhibition of suicide genes appear to be a part of an integrated process. Conversely, deprivation of growth factors seems able to induce an active process of programmed cell death characterized by Ca++, Mg++ - dependent endonuclease activity and DNA fragmentation (apoptosis). Similar phenomena have been shown to accompany the terminal differentiation process in several cellular systems. The understanding of the factors which favour or prevent cell death (a phenomenon which has been recognized as one of the most important in fetal development and morphogenesis) will help to unravel and eventually to manipulate the aging process. In an evolutionary perspective, cell senescence appears to be the price paid to avoid unlimited capability of proliferation, i.e. cell transformation and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyreuther K.T., Cerutti P.A., Clark B.F.C., Delabar J.M., Esser K., Franceschi C, Kirkwood T.B.L., Rattan S.I.S., Treton J.A., Uitterlinden A.G., Vandenberghe A.M., Vijg J.: Molecular biology of ageing, EURAGE, Rijswijk, 1988, pp. 1-32.

  2. Teoule R.: Radiation-induced DNA damage and its repair. Int. J. Radiat. Biol. 51: 573–589, 1988.

    Article  Google Scholar 

  3. Teebor G.W., Roostein R.J., Cadet J.: The repairability of oxidative free radical mediated damage to DNA: a review. Int. J. Radiat. Biol 54: 131–150, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Rubin J.S.: The molecular genetics of the incision step in the DNA excision repair process. Int. J. Radiat. Biol. 54: 309–365, 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Cleaver J.E., Borek C, Milam K., Morgan W.F.: The role of poly (ADP-ribose) synthesis in toxicity and repair of DNA damage. Pharmac. Ther. 31: 269–293, 1987.

    Article  Google Scholar 

  6. Hart R.H., Setlow R.B.: Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc. Natl. Acad. Sci. USA 71: 2169–2173, 1974.

    Article  PubMed  CAS  Google Scholar 

  7. Licastro F., Franceschi C., Chiricolo M., Battelli M.G., Tabacchi P., Cenci M., Barboni M., Pallenzona D.: DNA repair after gamma radiation and Superoxide dismutase activity in lymphocytes from subjects with far advanced age. Carcinogenesis 3: 45–48, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Setlow R.B.: DNA repair, aging, and Cancer. Natl. Cancer Inst. Monogr. 60: 249–255, 1982.

    PubMed  CAS  Google Scholar 

  9. Franceschi C, Licastro F., Chiricolo M., Zannotti M., Masi M.: Premature senility in Down’s syndrome: a model for and an approach to the molecular genetics of the ageing process. In: Facchini A., Haaijman J.J., Labò G. (Eds.), Immunoregulation in Ageing. EURAGE, Rijswijk, 1986, pp. 77–83.

    Google Scholar 

  10. Vijg J., Knook D.L.: DNA repair in relation to the aging process. J. Am. Ger. Soc. 35: 532–541, 1987.

    CAS  Google Scholar 

  11. Vijg J.: DNA repair and the aging process, TNO Institute for Experimental Gerontology, Rijswijk, 1987; pp. 1–149.

    Google Scholar 

  12. Kirkwood T.B.L.: DNA, mutations and aging. Mut. Res. 219: 1–7, 1989.

    Article  CAS  Google Scholar 

  13. Hayflick L: The cellular basis for biological aging. In: Finch C.E., Schneider E.L. (Eds), Handbook of the biology of aging. Van Nostrand Reinhold, New York, 1977, pp. 159–186.

    Google Scholar 

  14. Ahnstrom G.: Techniques to measure DNA single-strand breaks in cells: a review. Int. J. Radiat. Biol. 54: 695–707, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Ames B.N., Saul R.L.: Oxidative DNA damage, cancer and aging. In: Cross C.E. (moderator), Oxygen radicals and human disease. Ann. Intern. Med. 107: 536-539, 1987.

    Google Scholar 

  16. McCord J.M.: Oxygen-derived free radicals in post-ischemic tissue injury. N. Engl. J. Med. 312: 159–163, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Halliwell B.: Oxygen radicals and tissue injury. Federation of American Societies for Experimental Biology, Rockville Pike, Bethesda, 1988, pp. 1–148.

    Google Scholar 

  18. Werns S.W., Lucchesi B.R.: Leukocytes, oxygen radicals, and myocardial injury due to ischemia and reper-fusion. Free Radic. Biol. Med. 4: 31–37, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Kohen R.K., Yamamoto Y., Cundy K.C., Ames B.N.: Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 85: 3175–3179, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Meneghini R.: Genotoxicity of active oxygen species in mammalian cells. Mut. Res. 195: 215–230, 1988.

    Article  CAS  Google Scholar 

  21. Harman D.: The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Harman D.: Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11: 298–300, 1956.

    Article  PubMed  CAS  Google Scholar 

  23. Adelman R., Saul R.L., Ames B.N.: Oxidative damage to DNA: relation to species metabolic rate and life span. Proc. Natl. Acad. Sci. USA 85: 2706–2708, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Richter C., Frei B.: Ca release from mitochondria induced by prooxidants. Free Radic. Biol. Med. 4: 365–375, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Armstrong D., Sohal R.S., Cutler R.G., Slater T. (Eds.): Free Radicals in Molecular Biology, Aging, and Disease, Raven Press, 1984, pp. 1-416.

  26. Bonetti F., Licastro F., Chiricolo M., Franceschi C.: La sindrome di Down: un invecchiamento precoce del sistema immunitario. Rec. Progr. Med. 69: 679–709, 1980.

    CAS  Google Scholar 

  27. Franceschi C, Monti D., Cossarizza A., Tomasi A., Sola P., Zannotti M.: Oxidative stress, poly (ADP-ribosyl) ation and aging: in vitro studies on lymphocytes from normal and Down’s syndrome subjects of different age and from patients with Alzheimer’s dementia. In: Emerit I., Packer L., Auclair C. (Eds.), Antioxidants in Therapy and Preventive Medicine, Plenum Press, New York, in press.

  28. Chaudhri G., Clark I.A., Hunt N.H., Cowden W.B., Ceredig R.: Effect of antioxidants on primary alloantigen-induced T cell activation and proliferation. J. Immunol. 137: 2646–2652, 1986.

    PubMed  CAS  Google Scholar 

  29. Crawford D., Zbinden I., Amstad P., Cerutti P.: Oxidant stress induces the protooncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 3: 27–32, 1988.

    CAS  Google Scholar 

  30. Allen R.G., Balin A.K., Reimer R.J., Sohal R.S., Nations C.: Superoxide dismutase induces differentiation in microplasmodia of the slime mold physarum polycephalum. Arch. Biochem. Biophys. 261: 205–211, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Pelham H.: Activation of heat-shock genes in eukaryotes. Trends Genet.: 31-35, 1985.

  32. Lindquist S.: The heat-shock response., Annu. Rev. Biochem. 55: 1151–1191, 1986.

    Article  CAS  Google Scholar 

  33. Lanks K.W.: Modulators of the eukaryotic heat shock response. Exp. Cell. Res. 165: 1–10, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Deguchi Y., Negoro S., Kishimoto S.: Age-related changes of heat shock protein gene transcription in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 157: 580–584, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Tsuji Y., Ishibashi S., Ide T.: Induction of heat shock protein in young and senescent human diploid fibro-blasts. Mech. Ageing Deu. 36: 155–160, 1986.

    Article  CAS  Google Scholar 

  36. Shall S.: ADP-ribosylation of proteins: a ubiquitous cellular control mechanism. In: Zappia V., Galletti P., Porta R. (Eds.), Advances in translational modifications of proteins and aging. Plenum Press, New York, 1988, pp. 597–611.

    Google Scholar 

  37. Berger N.A.: Poly (ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101: 4–15, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Schraufstatter I.U., Hinshaw D.B., Hyslop P.A., Spragg R.G., Cochrane C.G.: Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest. 77: 1312–1320, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Carson D.A., Seto S., Wasson D.B., Carrera C.J.: DNA strand breaks, NAD metabolism, and programmed cell death. Exp. CellRes. 164: 273–281, 1986.

    Article  CAS  Google Scholar 

  40. Gaal J.C., Smith R.K., Pearson C.K.: Cellular euthanasia mediated by a nuclear enzyme: a central role for nuclear ADP-ribosylation in cellular metabolism. Trends Biochem. Sci. 12: 129–130, 1987.

    Article  CAS  Google Scholar 

  41. Cossarizza A., Monti D., Zannotti M., Franceschi C.: Lymphocyte death by oxidative stress and aging: effect of inhibitors of ADP-ribosyl transferase. J. Cell. Biochem. Suppl. 13C, 156, 1989 (abstract).

  42. Chapman M.L., Zaun M.R., Gracy R.W.: Changes in NAD levels in human lymphocytes and fibroblasts during aging and in premature aging syndromes. Mech. Ageing Dev. 21: 157–167, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Polla B.S.: A role for heat shock proteins in inflammation? Immunol.Today 9: 134–137, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Spitz D.R., Dewey W.C., Li G.C.: Hydrogen peroxide or heat shock induces resistance to hydrogen peroxide in Chinese hamster fibroblasts. J. Cell. Physiol. 131: 364–373, 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Burgman P., Konings W.T.: Effect of inhibitors of poly (ADP-ribose) polymerase on the heat response of He-La S3 cells. Radiat. Res. 116: 406–415, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Maridonneau-Parini I., Clerc J., Polla B.S.: Heat shock inhibits NADPH oxidase in human neutrophils. Biochem. Biophys. Res. Commun. 154: 179–186, 1988.

    Article  PubMed  CAS  Google Scholar 

  47. Armour E.P., Lee J.L., Corry P.M., Borrelli M.J.: Protection from heat-induced protein migration and DNA repair inhibition by cicloheximide. Biochem. Biophys. Res. Commun. 157: 611–617, 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Kato H., Harada M., Tsuchiya K., Moriwaki K.: Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and lifespan of the donor species. Japan J. Genet. 55: 99–108, 1980.

    Article  Google Scholar 

  49. Francis A.A., Lee W.H., Regan J.D.: The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals. Mech. Ageing Deu. 16: 181–189, 1981.

    CAS  Google Scholar 

  50. Treton J.A., Courtois Y.: Correlation between DNA excision repair and mammalian lifespan in lens epithelial cells. Cell Biol. Int. Rep. 6: 253–260, 1982.

    Article  PubMed  CAS  Google Scholar 

  51. Hall K.Y., Hart R.W., Bernischke A.K., Walford R.L.: Correlation between ultraviolet-induced DNA repair in primary lymphocytes and fibroblasts and species maximum achievable lifespan. Mech. Ageing Dev. 24: 163–173, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Cleaver J.E.: DNA repair deficiencies and cellular senescence are unrelated in xeroderma pigmentosum cell lines. Mech. Ageing Dev. 27: 189–496, 1984.

    Article  PubMed  CAS  Google Scholar 

  53. Franceschi C, Marini M., Zunica G., Monti D., Cossarizza A., Bologni A., Gatti C, Brunelli M.A.: Effect of ADP-ribosyl transferase inhibitors on the survival of human lymphocytes after exposure to different DNA-damaging agents, Ann. N.Y. Acad. Sci, 551: 446–447, 1988.

    Article  CAS  Google Scholar 

  54. Monti D., Cingi M.R., Troiano L., Cossarizza A., Reggiani D., Marini M., Tiozzo R., Franceschi C.: Opposite effects of 3- aminobenzamide in lymphocytes and fibroblasts damaged by oxygen free radicals. Proceedings of the “Fourth European Meeting on ADP ribosylation of Proteins”, Pavia, Italy, April 20–23, 1989, p, 51 (abstract).

  55. Cerutti P.: Response modification creates promotability in multistage carcinogenesis. Carcinogenesis 9: 519–526, 1988.

    Article  PubMed  CAS  Google Scholar 

  56. Sklar M.D.: The ras oncogenes increases the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 239: 645–647, 1988.

    Article  PubMed  CAS  Google Scholar 

  57. Hartley J., Gibson N., Kilkenny A., Yuspa S.: Mouse keratinocytes derived from initiated skin or papillomas are resistant to DNA strand breakage by benzoylperoxide: a possible mechanism for tumor promotion by benzoyl-peroxide. Carcinogenesis 8: 1827–1830, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Willie A.H., Kerr J.F.R., Currie A.R.: Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251–306, 1980.

    Article  Google Scholar 

  59. Willie A.H., Duvall E.: Death and the cell. Immunol. Today 7: 115–119, 1986.

    Article  Google Scholar 

  60. Duke R.C., Chervenak R., Cohen J.J.: Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis, Proc. Natl. Acad. Sci. USA 80: 6361–6365, 1983.

    Article  CAS  Google Scholar 

  61. Cohen J.J., Duke R.C.: Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132: 38–42, 1984.

    PubMed  CAS  Google Scholar 

  62. Compton M.M., Cidlowski J.A.: Rapid in vivo effects of glucocorticoids on the integrity of rat lymphocyte genomic deoxyribonucleic acid. Endocrinology 118: 38–45, 1986.

    Article  PubMed  CAS  Google Scholar 

  63. Sellins K.S., Cohen J.J.: Gene induction by gamma-irradiation leads to DNA fragmentation in lymphocytes. J. Immunol 139: 3199–3206, 1987.

    PubMed  CAS  Google Scholar 

  64. Fraker P.J., Haas S.M., Lecke R.W.: Effect of zinc deficiency on the immune response of the young adult A/J mice. J. Nutr. 107:1889–1892, 1977.

    PubMed  CAS  Google Scholar 

  65. Fraker P.J.: Zinc deficiency: a common immunodeficiency state. Surv. Immunol. Res. 2: 155–163, 1983.

    PubMed  CAS  Google Scholar 

  66. Fabris N., Mocchegiani E., Amadio L., Zannotti M., Licastro F., Franceschi C.: Thymic hormone deficiency in normal ageing and in Down’s syndrome: is there a primary failure of the thymus? Lancet i: 983–986, 1984.

    Article  Google Scholar 

  67. Franceschi C., Licastro F., Chiricolo M., Bonetti F., Zannotti M., Fabris N., Mocchegiani E., Fantini M.P., Paolucci P., Masi M.: Deficiency of autologous mixed lymphocyte reactions and serum thymic factor level in Down’s syndrome. J. Immunol. 126: 2161–2164, 1981.

    PubMed  CAS  Google Scholar 

  68. Licastro F., Chiricolo M., Tabacchi P.L., Barboni F., Zannotti M., Franceschi C.: Enhancing effect of lithium and potassium ions on lectin-induced lymphocyte proliferation in aging and Down’s syndrome subjects. Cell. Immunol. 75, 111–121, 1983.

    Article  PubMed  CAS  Google Scholar 

  69. Chiricolo M., Minelli L., Licastro F., Tabacchi P.L., Zannotti M., Franceschi C.: Alteration of the capping phenomenon on lymphocytes from aged and Down’s syndrome subjects. Gerontology 30: 145–152, 1984.

    Article  PubMed  CAS  Google Scholar 

  70. Franceschi C, Chiricolo M., Licastro F., Zannotti M., Masi M., Moccheggiani E., Fabris N.: Oral zinc supplementation in Down’s syndrome. Restoration of thymic endocrine activity and of some immune defects, J. Ment. Defic. Res. 32: 169–181, 1988.

    PubMed  Google Scholar 

  71. Martin D.P., Schimidt R.E., Di Stefano P.S., Lowry O.H., Carter J.G., Johnson E.M.: Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by Nerve Growth Factor deprivation. J. Cell Biol. 106: 829–844, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Kanter P., Leister K.J.M., Tomei L.D., Wenner P.A., Wenner C.E.: Epidermal growth factor and tumor promoters prevent DNA fragmentation by different mechanisms, Biochem. Biophys. Res. Commun. 118: 392–399, 1984.

    Article  CAS  Google Scholar 

  73. Tomei L.D., Kanter P., Wenner CE.: Inhibition of radiation-induced apoptosis in vitro by-tumor promoters, Biochem. Biophys. Res. Commun. 155: 324–331, 1988.

    Article  CAS  Google Scholar 

  74. Duke R.C., Cohen J.J.: IL-2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res. 5: 289–297, 1986.

    PubMed  CAS  Google Scholar 

  75. Wielckens K., George E., Pless T., Hilz H.: Stimulation of poly(ADP-ribosyl)ation during Ehrlich ascites tumor cell “starvation” and suppression of concomitant DNA fragmentation by benzymide. J. Biol. Chem. 258: 4098–4104, 1983.

    PubMed  CAS  Google Scholar 

  76. Smith C.A., Williams G.T., Kingston R., Jenkinson E.J., Owen J.J.T.: Antibodies to CD3/T cell receptor complex induce death by apoptosis in immature T-cells in thymic cultures. Nature, 337: 181–184, 1989.

    Article  PubMed  CAS  Google Scholar 

  77. Phelps C.H., Gage F.H., Growdon J.H., Hefti F., Har- baugh R., Johnston M.V., Khachaturian Z.S., Mobley W.C., Price D.L., Raskind M., Simpkins J., Thal L.J., Woodcock J.: Potential use of nerve growth factor to treat Alzheimer’s disease. Science 243: 11, 1989.

    Google Scholar 

  78. Phelps C.H., Gage F.H., Growdon J.H, Hefti F., Harbaugh R., Johnston M.V., Khachaturian Z.S., Mobley W.C., Price D.L., Raskind M., Simpkins J., Thal L.J., Woodcock J.: Potential use of nerve growth factor to treat Alzheimer’s disease. Neurobiol Aging, 1989, in press.

  79. Muel A.S., Chaudun E., Courtois Y., Modak S.P., Counis M.F.: Nuclear endogenous Ca -dependent endodeoxyribonuclease in differentiating chick embryonic lens fibers. J. Cell. Physiol. 127: 167–174, 1986.

    Article  PubMed  CAS  Google Scholar 

  80. Counis M.F., Chaudun E., Allinquant B., Muel A.S., Sanval M., Skidmore C, Courtois Y.: The lens: a model for chromatin degradation studies in terminally differentiating cells. Int. J. Biochem., 21: 235–242, 1989.

    Article  PubMed  CAS  Google Scholar 

  81. McMahon G., Alsina J.L., Levy S.B.: Induction of Ca, Mg-dependent endonuclease activity during the early stages of murine erythroleukemic cell differentiation. Proc. Natl. Acad. Sci USA 81: 7461–7465, 1984.

    Article  PubMed  CAS  Google Scholar 

  82. Sher W., Friend C: Breakage of DNA and alterations in folded genomes by inducers of differentiation in Friend erythroleukemic cells. Cancer Res. 38: 841–849, 1978.

    Google Scholar 

  83. Bell P.A., Jones C.N.: Cytotoxic effects of butyrate and other “differentiation inducers” on immature lymphoid cells. Biochem. Biophys. Res. Commun. 104: 1202–1208, 1982.

    Article  PubMed  CAS  Google Scholar 

  84. Kelsey K.T., Nagasawa H., Umans R.S., Little J.B.: Epidermal growth factor induces cytogenetic damage in mammalian cells. Carcinogenesis 8: 625–627, 1987.

    Article  PubMed  CAS  Google Scholar 

  85. Ochi T., Cerutti P.: Clastogenic action of hydroperoxy-5, 8, 11, 13-icosatetraenoic acids on the mouse embryo fibroblasts C3H/10T. Proc. Natl. Acad. Sci USA 84: 990–994, 1987.

    Article  PubMed  CAS  Google Scholar 

  86. Kozumbo W.J., Muellematter D., Jorg A., Emerit l., Cerutti P.: Phorbol ester-induced formation of clastogenic factor from human monocytes. Carcinogenesis 8: 521–526, 1987.

    Article  PubMed  CAS  Google Scholar 

  87. Elias L., Moore P.B., Rose S.M.: Tumor Necrosis Factor induced DNA fragmentation on HL-60 cells. Biochem. Biophys. Res. Commun. 157: 963–969, 1988.

    Article  PubMed  CAS  Google Scholar 

  88. O’Brien W., Stenman B., Sager R.: Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc. Natl. Acad. Sci. USA 83: 8659–8663, 1986.

    Article  PubMed  Google Scholar 

  89. Koi M., Barrett J.C.: Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc. Natl. Acad. Sci USA 83: 5992–5996, 1986.

    Article  PubMed  CAS  Google Scholar 

  90. Franceschi C, Chiricolo M.: DNA repair, aging and cancer in immunodeficient subjects. Giorn. It. Chir. Dermatol. Oncol 2: 325–331, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschi, C. Cell proliferation, cell death and aging. Aging Clin Exp Res 1, 3–15 (1989). https://doi.org/10.1007/BF03323871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323871

Keywords

Navigation