Skip to main content
Log in

Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Low-field (0.02–4 MHz) proton nuclear magnetic resonance (NMR) longitudinal relaxometry was applied to ultrahighly diluted aqueous solutions in order to detect physical modifications induced in the solvent by the dilution process. A mixture of silica-lactose (1.67·10−5 M silica, 2.92·10−2 M lactose) was initially solubilized in water or in saline, then submitted to eighteen iterative centesimal dilutions in water or in saline under vigorous vortex agitation and rigorously controlled atmospheric conditions, and compared to similarly treated pure water and saline as controls. Several independent series of samples were measured according to a blind protocol (total of 140 code-labelled samples). A slight frequency dispersion (about 4%) was found within the 0.02–4 MHz range, centered around 0.55 MHz, and ascribed to combined effects of silica and trace paramagnetic contaminants, both concentrated and in a reduced motion at the borosilicate wall tube interface. The iterative dilution-agitation process in pure water and saline induced no significant effect on relaxivity. Slightly increased relaxivity compared to solvent was found in the initial silica-lactose dilution (especially in saline, about 4%), which vanished unexpectedly slowly upon dilution, as adjusted to an arbitrary log-linear model. Statistical analysis was applied to succeed in discriminating solutions from their solvents beyond the 10−12 level of dilution. No clear explanation emerged, but post-experiment chemical analysis revealed high amounts (6 ppm) of released silica from the glass material used, with excess in silicalactose samples, and lower amounts of trace paramagnetic contaminants in highly diluted silica-lactose samples, which could provide a clue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Linde K., Jonas W.B., Melchart D., Worku F., Wagner H., Eitel F.: Hum. Exp. Toxicol.13, 481–492 (1994)

    Article  Google Scholar 

  2. Linde K., Clausius N., Ramirez G., Melchart D., Eitel F., Hedges L.V., Jonas W.B.: Lancet350, 834–843 (1997)

    Article  Google Scholar 

  3. Demangeat J.L., Demangeat C., Gries P., Poitevin B., Constantinesco A.: J. Med. Nucl. Biophys.16, 135–145 (1992)

    Google Scholar 

  4. Davenas E., Poitevin B., Benveniste B.: Eur. J. Pharmacol.135, 313–319 (1987)

    Article  Google Scholar 

  5. Koenig S.H., Brown III R.D. in: NMR Spectroscopy of the Cells and Organisms (Gupta R.K., ed.), vol. 2, pp. 75–114. Boca Raton, Fla.: CRC Press 1987.

    Google Scholar 

  6. Bloch B.W., Huang C.J.: Multivariate Statistical Methods for Business and Economics. Englewood Cliffs, N.J.: Prentice Hall 1974.

    Google Scholar 

  7. Iler R.K. in: The Chemistry of Silica (Iler R.K., ed.), chapt. 1, pp. 3–115. New York: Wiley 1979.

    Google Scholar 

  8. Graf V., Noak F., Béné G.J.: J. Chem. Phys.72, 861–863 (1980)

    Article  ADS  Google Scholar 

  9. Rommel E., Mischker K., Osswald G., Schweikert K.H., Noak F.: J. Magn. Reson.70, 219–234 (1986)

    Google Scholar 

  10. Hausser R., Noak F.: Z. Naturforsch.20, 1668–1675 (1965)

    ADS  Google Scholar 

  11. Kiihne S., Bryant R.G.: Biophys. J.78, 2163–2169 (2000)

    Article  ADS  Google Scholar 

  12. Hausser R., Noak F.: Z. Phys.182, 93–110 (1964)

    Article  ADS  Google Scholar 

  13. Bertini I., Briganti F., Xia Z.C., Luchinat C.: J. Magn. Reson. A101, 198–201 (1993)

    Article  Google Scholar 

  14. Glasel J.A., Lee K.H.: J. Am. Chem. Soc.96, 970–978 (1974)

    Article  Google Scholar 

  15. Korb J.P., Whaley-Hodges M., Bryant R.G.: Phys. Rev. E56, 1934–1945 (1997)

    Article  ADS  Google Scholar 

  16. Korb J.P., Whaley-Hodges M., Gobron T., Bryant R.G.: Phys. Rev. E60, 3097–3106 (1999)

    Article  ADS  Google Scholar 

  17. Piculell L.: J. Chem. Soc. Faraday Trans. 182, 387–399 (1986)

    Article  Google Scholar 

  18. Halle B., Piculell L.: J. Chem. Soc. Faraday Trans. 182, 415–429 (1986)

    Article  Google Scholar 

  19. Gillis P., Borcard B.: J. Magn. Reson.77, 19–32 (1988)

    Google Scholar 

  20. Korb J.P., Delville A., Xu S., Jonas J.: Magn. Reson. Imag.12, 179–181 (1994)

    Article  Google Scholar 

  21. Hills B.P.: Magn. Reson. Imag.12, 183–190 (1994)

    Article  Google Scholar 

  22. Stapf S., Kimmich R.: J. Chem. Phys.103, 2247–2250 (1995)

    Article  ADS  Google Scholar 

  23. Halle B.: Mol. Phys.53, 1427–1461 (1984)

    Article  ADS  Google Scholar 

  24. Morariu V.V., Mills R., Wolff L.A.: Nature227, 373–374 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -L. Demangeat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demangeat, J.L., Gries, P., Poitevin, B. et al. Low-field NMR water proton longitudinal relaxation in ultrahighly diluted aqueous solutions of silica-lactose prepared in glass material for pharmaceutical use. Appl. Magn. Reson. 26, 465–481 (2004). https://doi.org/10.1007/BF03166577

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03166577

Keywords

Navigation