Skip to main content
Log in

Angiogenesis and organ transplantation

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Angiogenesis is a vessel development process that maintains the vascular supply for organ function. Regulation of angiogenesis is provided by positive factors, such as vascular endothelial or basic fibroblast growth factors, and negative factors, such as thrombospondin and macrophage-derived inflammatory cytokines. While the role of angiogenesis in the wound healing, embryogenesis, tumor growth and proliferative diseases is clear, in organ transplantation it is not yet well established. Herein we discuss the potential role of angiogenesis in chronic renal disease and in transplant settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ang-1:

angiopoietin 1

Ang-2:

angiopoietin 2

APC:

antigen-presenting cell

bFGF FGF-2:

basic fibroblast growth factor

CD:

cluster of differentiation

Eta-1:

early T-lymphocyte activation-1

HGF/SF:

hepatocyte growth factor/scatter factor

ICAM-1:

intercellular adhesion molecule-1

IL-2:

intrleukin 2

I-R:

ischemia-reperfusion

TGF-β1 :

transforming growth factor β1

TSP-1:

thrombospondine-1

VCAM-1:

vascular cell adhesion molecule-1

VEGF:

vascular endothelial growth factor

References

  • Böhmová R., Viklický O.: Renal ischemia-reperfusion injury: an inescapable event affecting kidney transplantation outcome.Folta Microbiol. 46, 267–276 (2001).

    Article  Google Scholar 

  • Böttinger E.P., Bitzer M.: TGF-β signaling in renal disease.J.Am.Soc.Nephrol. 13, 2600–2610 (2002).

    Article  PubMed  Google Scholar 

  • Carmeliet P., Ferreira V., Breier G., Pollefeyt S., Kieckens L., Gertsenstein M., Fahrig M., Vandenhoeck A., Harpal K., Eberhardt C., Declercq C., Pawling J., Moons L., Collen D., Risau W., Nagy A.: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele.Nature 380, 435–439 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Cines D.B., Pollak E.S., Buck C.A., Loscalzo J., Zimmerman G.A., Mcever R.P., Pober J.S., Wick T.M., Konkle B.A., Schwartz B.S., Barnathan E.S., McCrae K.R., Hug B.A., Schmidt A.-M., Stern D.M.: Endothelial cells in physiology and in the pathophysiology of vascular disorders.Blood 91, 3527–3561 (1998).

    PubMed  CAS  Google Scholar 

  • De Fraipont F., Nicholson A.C., Feige J.-J., Van Meir E.G.: Thrombospondins and tumor angiogenesis.Trends Mol.Med. 7, 401–407 (2001).

    Article  PubMed  Google Scholar 

  • Dvorak H.F., Harvey V.S., Estrella P., Brown L.F., McDonagh J., Dvorak A.M.: Fibrin containing gels induce angiogenesis. Implications for tumor stroma regeneration and wound healing.Lab.Invest. 57, 673–686 (1987).

    PubMed  CAS  Google Scholar 

  • El Nahas A.M.: Plasticity of kidney cells: role in kidney remodeling and scarring.Kidney Internat. 64, 1553–1563 (2003).

    Article  Google Scholar 

  • Etoh T., Shibuta K., Barnard G.F., Kitano S., Mori M.: Angiogenin expression in human colorectal cancer: the role of focal macrophage infiltration.Clin.Cancer Res. 6, 3545–3551 (2000).

    PubMed  CAS  Google Scholar 

  • Ferrara N., Carver Moore K., Chen H., Dowd M., Lu L., O’Shea K.S., Powell-Braxton L., Hillian K.J., Moore M.W.: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.Nature 380, 439–442 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N.: Molecular and biological properties of vascular endothelial growth factor.J.Mol.Med. 77, 527–543 (1999a).

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N.: Role of vascular endothelial growth factor in the regulation of angiogenesis.Kidney Internat. 56, 794–814 (1999b).

    Article  CAS  Google Scholar 

  • Gabrilove J.L.: Angiogenic growth factors: autocrine and paracrine regulation of survival in hematologic malignancies.Oncologist 6, 4–7 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich D.I., Ishida T., Oyama T., Ran S., Kravtsov V., Nadaf S., Carbone D.P.: Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineagesin vitro.Blood 92, 4150–4166 (1998).

    PubMed  CAS  Google Scholar 

  • Gherardi E., Gray J., Stoker M., Perryman M., Furlong R.: Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement.Proc.Nat.Acad.Sci.USA 86, 5844–5848 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Hamar P., Szabo A., Muller V., Heemann U.: The involvement of activated T cells and growth factor production in the early and late phase of chronic kidney allograft nephropathy in rats.Transplant Internat. 15, 446–454 (2002).

    Article  CAS  Google Scholar 

  • Hata K., Nakayama K., Fujiwaki R., Katabuchi H., Okamura H., Miyazaki K.: Expression of the angiopoietin-1, angiopoietin-2, Tie2, and vascular endothelial growth factor gene in epithelial ovarian cancer.Gynecol.Oncol. 93, 215–222 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Iglesias-De la Cruz M.C., Ziyadeh F.N., Isono M., Kouahou M., Han D.C., Kalluri R., Mundel P., Chen S.: Effects of high glucose and TGF-β1 on the expression of collagen IV and vascular endothelial growth factor in mouse podocytes.Kidney Internat. 62, 901–913 (2002).

    Article  CAS  Google Scholar 

  • Iruela-Arispe M.L., Lombardo M., Krutzsch H.C., Lawler J., Roberts D.D.: Inhibition of angiogenesis by thrombospondin-1 is mediated by 2 independent regions within the type 1 repeats.Circulation 100, 1423–1431 (1999).

    PubMed  CAS  Google Scholar 

  • Jones S.G., Morrisey K., Williams J.D., Phillips A.O.: TGF-β1 stimulates the release of preformed bFGF from renal proximal tubular cells.Kidney Internat. 56, 83–91 (1999).

    Article  CAS  Google Scholar 

  • Kang D.H., Hughes J., Mazzali M., Schreiner G.F., Johnson R.J.: Impaired angiogenesis in the remnant kidney model — II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function.J.Am.Soc.Nephrol. 12, 1448–1457 (2001a).

    PubMed  CAS  Google Scholar 

  • Kang D.H., Joly A.H., Oh S.W., Hugo C.H., Kerjaschki D., Gordon K.L., Mazzali M., Jefferson J.A., Hughes J., Madsen K.M., Schreiner G.F., Johnson R.J.: Impaired angiogenesis in the remnant kidney model — I. Potential role of vascular endothelial growth factor and thrombospondin-1.J.Am.Soc.Nephrol. 12, 1434–1447 (2001b).

    PubMed  CAS  Google Scholar 

  • Kelly D.J., Hepper C., Wu L.L., Cox A.J., Gilbert R.E.: Vascular endothelial growth factor expression and glomerular endothelial cell loss in the remnant kidney model.Nephrol.Dial.Transplant. 18, 1286–1292 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kim Y.-G., Suga S.-L., Kang D.-H., Jefferson J.A., Mazzali M., Gordon K.L., Matsui K., Breiteneder-Geleff S., Shankland S.J., Hughes J., Kerjaschki D., Schreiner G.F., Johnson R.J.: Vascular endothelial growth actor accelerates renal recovery in experimental thrombotic microangiopathy.Kidney Internat. 58, 2390–2399 (2000).

    Article  CAS  Google Scholar 

  • Kim K.-Y., Jeong S.-Y., Won J., Pyu P.-D., Nam M.-J.: Induction of angiogenesis by expression of soluble type II transforming growth factor-β receptor in mouse hepatoma.J.Biol.Chem. 276, 38781–38786 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kim B.-S., Chen J., Weinstein T., Noir I.E., Goligorsky M.S.: VEGF expression in hypoxia and hyperglycemia: reciprocal effect on branching angiogenesis in epithelial-endothelial co-cultures.J.Am.Soc.Nephrol. 13, 2027–2036 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Koskinen P.K., Kovanen P.T., Lindstedt K.A., Lemström K.B.: Mast cells in acute and chronic rejection of rat cardiac allografts — a major source of basic fibroblast growth factor.Transplantotion 71, 1741–1747 (2001).

    Article  CAS  Google Scholar 

  • Kouwenhoven E.A., Ijzermans J.N.M., de Bruin R.W.F.: Etiology and pathophysiology of chronic transplant dysfunction.Transplant Internat. 13, 385–401 (2000).

    Article  CAS  Google Scholar 

  • Leali D., Dell’Era P., Stabile H., Sennino B., Chambers A.F., Naldini A., Sozzani S., Nico B., Ribatti D., Presta M.: Osteopontin (Eta-1) and fibroblast growth factor-2 cross talk in angiogenesis.J.Immunol. 171, 1085–1093 (2003).

    PubMed  CAS  Google Scholar 

  • Lemström K., Koskinen P., Käyry P.: Molecular mechanisms of chronic renal allograft rejection.Kidney Internat. 52, S2-S10 (1995).

    Google Scholar 

  • Lemstrom K.B., Krebs R., Nykänen A.I., Tikkanen J.M., Sihvola R.K., Aaltola E.M., Hayry P.J., Wood J., Alitalo K., Yla-Herttuala S., Koskinen P.K.: Vascular endothelial growth factor enhances cardiac allograft arteriosclerosis.Circulation 28, 2524–2530 (2002).

    Article  CAS  Google Scholar 

  • Melder R.J., Koenig G.C., Witwer B.P., Safabakhsh N., Munn L.L., Jain R.K.: During angiogenesis vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cells adhesion to tumour endothelium.Nature Med. 2, 992–997 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Melter M., Reinders M.E.J., Sho M., PAL S., Geehan C.H., Denon M.D., Mukhopadhyay D., Briscoe D.M.: Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesisin vivo.Blood 96, 3801–3808 (2000).

    PubMed  CAS  Google Scholar 

  • Miyashiro M., Ogata N., Takahashi K., Matsushima M., Yamamoto C.H., Yamada H., Uyama M.: Expression of basic fibroblast growth factor and its receptor mRNA in retina tissue following ischemic injury in the rat.Grafe’s Arch.Clin.Exp. Ophthalmol. 236, 295–300 (1998).

    Article  CAS  Google Scholar 

  • Nykänen A.I., Krebs R., Saaristo A., Turunen P., Alitalo K., Yla-Herttuala S., Koskinen P.K., Lemström K.B.: Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis.Circulation 107, 1308–1314 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Özdemir B.H., Özdemir F.N., Gungen Y., Haberal M.: Role of macrophages and lymphocytes in the induction of neovascularization in renal allograft rejection.Am.J.Kidney Dis. 39, 347–353 (2002).

    Article  PubMed  Google Scholar 

  • Patterson C., Perrella M.A., Endege W.O., Yoshizumi M., Lee M.E., Haber E.: Downregulation of vascular endothelial growth factor receptors by tumour necrosis factor-α in cultured human vascular endothelial cells.J.Clin.Invest. 98, 490–496 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Phelan M.W., Forman L.W., Perrine S.P., Faller D.V.: Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells.J.Lab.Clin.Med. 132, 519–529 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Reinders M.E.J., Fang J.C., Wong W., Ganz P., Briscoe D.M.: Expression of vascular endothelial growth factor in human cardiac allografts: association with rejection.Transplantation 76, 224–230 (2003a).

    Article  PubMed  CAS  Google Scholar 

  • Reinders M.E.J., Robertson S.W., Sho M., Izawa A., Luster A.D., Sayegh M.S., Briscoe D.M.: Vascular endothelial growth factor (VEGF) mediates the trafficking of cells into allograft and acute rejection.Am.J.Transplant. 3, 443 (2003b).

    Google Scholar 

  • Sanchez-Elsner T., Botella L.M., Velasco B., Corbí A., Attisano L.: Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression.J.Biol.Chem. 276, 38527–38535 (2003).

    Article  Google Scholar 

  • Senger D.R., Galli S.J., Dvorak A.M., Peruzzi C.A., Harvey V.S., Dvorak H.F.: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science 219, 983–985 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Sengupta S., Gherardi E., Sellers L.A., Wood J.M., Sasisekharan R., Fan T.-P.D.: Hepatocyte growth factor scatter factor can induce angiogenesis independently of vascular endothelial growth factor.Arterioscler.Thromb.Vasc.Biol. 23, 69–75 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Siviridis E., Giatromanolaki A., Koukourakis M.I.: The vascular network of tumors — what is it not for?J.Pathol. 201, 173–180 (2003).

    Article  Google Scholar 

  • Stavri G.T., Zachary I.C., Baskerville P., Martin J.F., Erusalimsky J.D.: Basic fibroblast growth factor upregulates expression of vascular endothelial growth factor in vascular smooth muscle. Synergistic interaction with hypoxia.Circulation 92, 11–14 (1995).

    PubMed  CAS  Google Scholar 

  • Zhao Q., Egashira K., Inoue S., Usui M., Kitamoto S., Ni W., Hiasa K., Ichiki T., Shibuya M., Takeshita A.: Vascular endothelial growth factor is necessary in the development of arteriosclerosis by recruiting/activating monocytes in a rat model of long-term inhibition of nitric oxide synthesis.Circulation 105, 1110–1115 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Viklický.

Additional information

The study was supported by grants of theCzech Ministry of Health (ND6641/3-2001, CEZ L17/98: 00023001).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajnoch, J., Viklický, O. Angiogenesis and organ transplantation. Folia Microbiol 49, 499–505 (2004). https://doi.org/10.1007/BF02931524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931524

Keywords

Navigation