Skip to main content
Log in

Functional capacity of Fcγ receptor III (CD16) on human neutrophils

  • Neutrophil FcγRIII Function
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Receptors for the Fc region of immunoglobulin G (IgG) are a structurally diverse group of molecules. Within the three FcγR families (FcγRI, FcγRII and FcγRIII), the presence of distinct genes and alternative splicing variants leads to a variety of receptor isoforms that are most strikingly different in the transmembrane and intracellular regions. An obvious example of structural variation in the transmembrane and cytoplasmic domains is observed in the FcγRIII family. FcγRIIIB, which is nearly identical to FcγRIIIA in the extracellular domains, lacks both transmembrane and cytoplasmic protein domains and is anchored to the cell through a glycosyl phosphatidylinositol anchor. Analysis of FcγRIII function presents a considerable challenge in understanding the role of different FcγR receptors in polymorphonuclear neutrophil (PMN) function. While one hypothesis for the role of FcγRIII in serves as a binding molecule which focuses the IgG ligand for more efficient recognition and intracellular signaling by FcγRII, recent observations from a number of laboratories suggest that FcγRIII on PMN can transduce signals across the membrane independent of ligand-dependent engagement of FcγRII. We will review these data and present recent data which suggest that the role of FcγRIII extends beyond direct initiation of functions to a more complex role of synergistic receptor interactions. These findings will be reviewed in the context of the experimental approaches that thave been used to examine the roles of FcγRII and FcγRIII on PMN function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ravetch IV, Anderson CL: FcγR family: Proteins, transcripts, and genes: in Metzger H (ed): Fc Receptor and the Action of Antibodies. Washington, American Society of Microbiology, 1990, pp 211–235.

    Google Scholar 

  2. Van de Winkel JGJ, Anderson CL: Biology of human IgG Fc receptors. J Leukocyte Biol 1991;49:511–524.

    PubMed  Google Scholar 

  3. Unkeless JC, Scigliano E, Freedman VH: Structure and function of human and murine receptors for IgG. Annu Rev Immunol 1988;6:251–281.

    Article  PubMed  CAS  Google Scholar 

  4. Miettinen HM, Rose JK, Mellman I: Fc receptor isoforms exhibit distinct abilities for coated pit localization as a result of cytoplasmic domain heterogeneity. Cell 1989;58:312–327.

    Article  Google Scholar 

  5. Ravetch JV, Perussia B: Alternative membrane forms of FcγRIII (CD16) on human natural killer cells and neutrophils. J Exp Med 1989;170:481–497.

    Article  PubMed  CAS  Google Scholar 

  6. Selvaraj P, Rosse WF, Silber R, Springer TA: The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature 1988;333:565–567.

    Article  PubMed  CAS  Google Scholar 

  7. Huizinga TWJ, Van der Schoot CE, Jost C, Klaassen R, Kleijer M, Von dem Borne AEGKr, Roos D, Tetteroo PAT: The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature 1988;333:667–669.

    Article  PubMed  CAS  Google Scholar 

  8. Edberg JC, Redecha P, Salmon JE, Kimberly RP: Human FcγRIII (CD16). Isoforms with distinct allelic expression, extracellular domains, and membrane linkages on PMN and NK cells. J Immunol 1989;143:1642–1649.

    PubMed  CAS  Google Scholar 

  9. Selvaraj P, Carpen O, Hibbs ML, Springer TA: NK cell and granulocyte Fcγ receptor III (CD16) differ in membrane anchor and signal transduction. J Immunol 1989;143:3283–3288.

    PubMed  CAS  Google Scholar 

  10. Edberg JC, Salmon JE, Whitlow M, Kimberly RP: Preferential expression of human FcγRIIIPMN (CD16) in paroxysmal nocturnal hemoglobinuria. Discordant expression of glycosyl phosphatidylinositol linked proteins. J Clin Invest 1991;87:58–67.

    Article  PubMed  CAS  Google Scholar 

  11. Klassen RJL, Ouwehand WH, Huizinga TWJ, Englefriet CP, Von dem Borne AEGKr: The Fc-receptor III of cultured human monocytes: Structural similarity with FcRIII of natural killer cells and role in the extracellular lysis of sensitized erythrocytes. J Immunol 1990;144:599–606.

    Google Scholar 

  12. Edberg JC, Barinsky M, Redecha PB, Salmon JE, Kimberly RP: FcγRIII expressed on cultured monocytes is a N-glycosylated transmembrane protein distinct from FcγRIII expressed on NK cells. J Immunol 1990;144:4729–4734.

    PubMed  CAS  Google Scholar 

  13. Fanger MW, Shen L, Graziano RF, Guyre PM: Cytotoxicity mediated by human Fc receptors for IgG. Immunol Today 1989;10:92–99.

    Article  PubMed  CAS  Google Scholar 

  14. Comber PG, Rossman MD, Rappaport EF, Chien P, Hogarth PM, Schreiber AD: Modulation of human mononuclear phagocyte FcγRII mRNA and protein. Cell Immunol 1989;124:292–307.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson CL, Ryan DH, Looney RJ, Leary PC: Structural polymorphism of the human monocyte 40 kilodalton Fc receptor for IgG. J Immunol 1987;138:2254–2256.

    PubMed  CAS  Google Scholar 

  16. Salmon JE, Edberg JC, Kimberly RP: Fcγ receptor on human neutrophils: Allelic variants have functionally distinct capacities. J Clin Invest 1990;85:1287–1295.

    Article  PubMed  CAS  Google Scholar 

  17. Rosenfeld SI, Ryan DH, Looney RJ, Anderson CL, Abraham GN, Leddy JP: Human Fcγ-receptors: Stable inter-donor variation in quantitative expression on platelets correlates with functional responses. J Immunol 1987;138:2869–2873.

    PubMed  CAS  Google Scholar 

  18. Huizinga TWJ, De Haas M, Kleijer M, Nuijens JH, Roos D, Von dem Borne AEGKr: Soluble Fcγ receptor III in human plasma originates from release by neutrophils. J Clin Invest 1990;86:416–423.

    Article  PubMed  CAS  Google Scholar 

  19. Huizinga TWJ, Van Kemenade F, Koenderman L, Dolman KM, Von dem Borne, AEGKr, Tetteroo PAT, Roos D: The 40-kDa Fcγ receptor (FcRII) on human neutrophils is essential for the IgG-induced respiratory burst and IgG-induced phagocytosis. J Immunol 1989;142:2365–2369.

    PubMed  CAS  Google Scholar 

  20. Anderson CL, Shen L, Eicher DM, Wewers MD, Gill JK: Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes. J Exp Med 1990;171:1333–1345.

    Article  PubMed  CAS  Google Scholar 

  21. Tetteroo PAT, van der Schoot CE, Visser FJ, Bos MJE, Von dem Borne AEGKr: Three different types of Fcγ receptors on human leukocytes defined by workshop antibodies: FcγRlow of neutrophils, FcγRlow of K/NK lymphocytes, and FcγRll; in McMichael AJ (ed): Leukocyte Typing III. London, Oxford University Press, 1988, pp 702–709.

    Google Scholar 

  22. Shen L, Guyre PM, Fanger MW: Polymorphonuclear leukocyte function triggered through the high affinity Fc receptor for monomeric IgG. J Immunol 1987;139:534–538.

    PubMed  CAS  Google Scholar 

  23. Low M: Glycosyl-phosphatidylinositol: A versatile anchor for cell surface proteins FASEB J 1989;3:1600–1608.

    PubMed  CAS  Google Scholar 

  24. Huizinga TWJ, Kerst M, Nuijens JH, Vlug A, Von dem Borne AEGKr: Binding characteristics of dimeric IgG subclass complexes to human neutrophils. J Immunol 1989;142:2359–2364.

    PubMed  CAS  Google Scholar 

  25. Metzger H: General aspects of antibody structure and function; in Metzger H (ed): Fc Receptors and the action of antibodies. Washington, American Society of Microbiology, 1990, pp 7–11.

    Google Scholar 

  26. Tosi MF, Berger M: Functional differences between the 40 kDa and the 50 to 70 kDa IgG Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. J Immunol 1988;141:2079–3102.

    Google Scholar 

  27. Rosse WF: Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria. Blood 1990; 75:1595–1601.

    PubMed  CAS  Google Scholar 

  28. Clark M, Liu L, Clarkson SB, Ory PA, Goldstein IM: An abnormality of the gene that encodes neutrophil Fc receptor III in a patient with systemic lupus erythematosus. J Clin Invest 1990;86:341–346.

    Article  PubMed  CAS  Google Scholar 

  29. Stroncek D, Skubitz K, Plachta L, Shankar R, Clay M, Herman J, Fleit H, McCullough J: Alloimmune neonatal neutropenia (ANN) due to an antibody directed to neutrophil Fc gamma receptor III (FcRIII) with maternal deficiency of CD16 antigen (abstract). Blood 1990;76:392.

    Google Scholar 

  30. Huizinga TWJ, Kuijpers RWAM, Kleijer M, Schulpen TWJ, Cuijpers HTM, Roos D, Von dem Borne AEGKr: Maternal neutrophil FcγIII deficiency leading to neonatal isoimmune neutropenia. Blood 1990; 76:1927–1932.

    PubMed  CAS  Google Scholar 

  31. Kimberly RP, Ahlstrom JW, Click ME, Edberg JC: The glycosyl phosphatidylinositol linked FcγIIIPMN mediates transmembrane signaling events distinct from FcγRII. J Exp Med 1990;171:1239–1249.

    Article  PubMed  CAS  Google Scholar 

  32. Salmon JE, Brogle N, Edberg JC, Kimberly RP: Fcγ receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by FcγII. J Immunol 1991;146:997–1004.

    PubMed  CAS  Google Scholar 

  33. Brennen PJ, Zigmond SH, Schreiber AD, Southwick FS: IgG immune complexes induce actin filament assembly in human neutrophils (abstract). Clin Res 1989;37:561.

    Google Scholar 

  34. Huizinga TWJ, Dolman KM, Van der Linden NJM, Kleijer M, Nuijens JH, Von dem Borne AEKr, Roos D: Phosphatidylinositol-linked FcRIII mediates exocytosis of neutrophil granule proteins, but does not mediate initiation of respiratory burst. J Immunol 1990;144:1432–1437.

    PubMed  CAS  Google Scholar 

  35. Reibman J, Haines KA, Gude D, Weissmann G: Differences in signal transduction between Fcγ receptors (FcγRII and FcγRIII) and FMLP receptors in neutrophils. J Immunol 1991;146:928–996.

    Google Scholar 

  36. Crockett-Torabi E, Fantone JC: Soluble and insoluble immune complexes activate human neutrophil NADPH oxidase by distinct Fcγ receptor-specific mechanisms. J Immunol 1990;145:3026–3032.

    PubMed  CAS  Google Scholar 

  37. Willis HE, Browder B, Feister AJ, Mohanakumar T, Ruddy S: Monoclonal antibody to human IgG Fc receptors. Cross-linking of receptors induces lysosomal enzyme release and superoxide generation by neutrophils. J Immunol 1988;140:234–239.

    PubMed  CAS  Google Scholar 

  38. Feister AJ, Browder B, Willis HE, Mohanakumar T, Ruddy S: Pertussis toxin inhibits human neutrophil responses mediated by the 42-kilodalton IgG Fc receptor. J Immunol 1988;141:228–233.

    PubMed  CAS  Google Scholar 

  39. Graziano RF, Fanger MW: FcγRI and FcγRII on monocytes and granulocytes are cytotoxic trigger molecules for tumor cells. J Immunol 1987;139:3536–3541.

    PubMed  CAS  Google Scholar 

  40. Lanier LL, Ruitenberg JJ, Phillips JH: Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol 1988;141:3478–3485.

    PubMed  CAS  Google Scholar 

  41. Karpovsky B, Titus JA, Stephany DA, Segal DM: Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target and anti-Fcγ receptor antibodies. J Exp Med 160: 1984; 160:1686–1701.

    Article  PubMed  CAS  Google Scholar 

  42. Graziano RF, Looney RJ, Fanger MF: FcγR-mediated killing by eosinophils. J Immunol 1989;142:230–235.

    PubMed  CAS  Google Scholar 

  43. Perussia B, Acuto O, Terhorst C, Faust J, Lazarus R, Fanning V, Trinchieri G: Human natural killer cells analyzed by B731, a monoclonal antibody blocking Fc receptor functions. J Immunol 1983;130:2142–2148.

    PubMed  CAS  Google Scholar 

  44. Salmon JE, Kapur S, Kimberly RP: Opsonin-independent ligation of Fc receptors: The 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and non-opsonizedEscherichia coli. J Exp Med 1987;166:1798–1813.

    Article  PubMed  CAS  Google Scholar 

  45. Salmon JE, Kimberly RP: Phagocytosis of concanavalin A-treated erythrocytes is mediated by the Fcγ receptor. J Immunol 1986;137:456–461.

    PubMed  CAS  Google Scholar 

  46. Kimberley RP, Tappe NJ, Merriam LT, Redecha PB, Edberg JC, Schwartzman S, Valinsky JE: Carbohydrates on human Fcγ receptors: Interdependence of the classical IgG and nonclassical lectin binding sites on human FcγRIII expressed on neutrophils. J Immunol 1989;142:3923–3930.

    Google Scholar 

  47. Brown EJ, Bohnsack JF, Gresham HD: Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. J Clin Invest 1988;81:365–375.

    Article  PubMed  CAS  Google Scholar 

  48. Graham IL, Gresham H, Brown EJ: An immobile subset of plasma membrane CD11b/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J Immunol 1989;142:2352–2358.

    PubMed  CAS  Google Scholar 

  49. Paul W: Pleiotropy and redundancy. Cell 1989;19:521–524.

    Article  Google Scholar 

  50. Werner G, Von dem Borne AEGKr, Bos MJE, Tromp JF, Van der Plasvan Dalen CM, Visser FJ, Englefiet CP, Tetteroo PAT: Localization of the human NA1 alloantigen on neutrophils to Fcγ receptors; in Reinherz EL, Haynes BF, Nadler LM, Berstein ID (eds): Leukocyte Typing II. New York, Springer, 1985, vol 3, pp 109–121.

    Google Scholar 

  51. Ory PA, Goldstein IM, Kwoh EE, Clarkson SB: Characterization of polymorphic forms of FcRIII on human neutrophils. J Clin Invest 1989; 83:1676–1681.

    Article  PubMed  CAS  Google Scholar 

  52. Huizinga TWJ, Kleijer M, Tetteroo PAT, Roos D, Von dem Borne AEGKr: Biallelic neutrophil Na-antigen system is associated with a polymorphism on the phospho-inositol-linked Fcγ receptor III (CD16). Blood 1990;75:213–217.

    PubMed  CAS  Google Scholar 

  53. Anderson CL, Ryan DH, Looney RJ, Leary PC: Structural polymorphism of the human monocyte 40 kilodalton Fc receptor for IgG. J Immunol 1987;138:2254–2256.

    PubMed  CAS  Google Scholar 

  54. Clark MR, Clarkson SB, Ory PA, Stollman N, Goldstein IM: Molecular basis for a polymorphism involving Fc receptor II on human monocytes. J Immunol 1989;143:1731–1734.

    PubMed  CAS  Google Scholar 

  55. Warmerdam PAM, Van de Winkel JGJ, Gosselin EJ, Capel PJA: Molecular basis for a polymorphism of human Fcγ receptor II (CD32). J Exp Med 1990;172:19–25.

    Article  PubMed  CAS  Google Scholar 

  56. Gosselin FJ, Brown MF, Anderson CL, Zipf TF, Guyre PM: The monoclonal antibody 41H16 detects the Leu-4 responder phenotype of human FcγRII. J Immunol 1990;144:1817–1822.

    PubMed  CAS  Google Scholar 

  57. Robinson PJ: Phosphatidylinositol membrane anchors and T-cell activation. Immunol Today 1991;12:35–41.

    Article  PubMed  CAS  Google Scholar 

  58. Ashwell JD, Klausner RD: Genetic and mutational analysis of the T-cell antigen receptor. Annu Rev Immunol 1990;8:139–167.

    Article  PubMed  CAS  Google Scholar 

  59. Volarevic S, Burns CM, Sussman JJ, Ashwell JD: Intimate association of Thy-1 and the T-cell antigen receptor with the CD45 tyrosine phosphatase. Proc Natl Acad Sci USA 1990; 87:7085–7089.

    Article  PubMed  CAS  Google Scholar 

  60. Lanier LL, Yu G, Phillips JH: Co-association of CD3ξ with a receptor (CD16) for IgG Fc on human natural killer cells. Nature 1989;342:803–805.

    Article  PubMed  CAS  Google Scholar 

  61. Hibbs ML, Selvaraj P, Carpen O Springer TA, Kuster H, Jouvin ME, Kinet JP: Mechanisms for regulating expression of membrane isoforms for FcγRIII (CD16). Science 1989;246:1608–1611.

    Article  PubMed  CAS  Google Scholar 

  62. Kurosaki T, Ravetch JV: A single amino acid in the glycosyl phosphatidyl inositol attachment domain determines the membrane topology of FcγRIII. Nature 1989;342:805–807.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson P, Caligiuri M, O’Brien C, Manley T, Ritz J, Schlossman SF: Fcγ receptor type III (CD16) is included in the ξ NK receptor complex expressed by human natural killer cells. Proc Natl Acad Sci USA 1990;87:2274–2278.

    Article  PubMed  CAS  Google Scholar 

  64. Orloff DG, Ra C, Frank SJ, Klausner RD, Kinet JP: Family of disulphide-linked dimers containing the ξ and η chains of the T-cell receptor and the γ chain of Fc receptors. Nature 1990;347:189–191.

    Article  PubMed  CAS  Google Scholar 

  65. Orloff DG, Frank SJ, Robey FA, Weisman AM, Klausner RJ: Biochemical characterization of the η chain of the T-cell receptor. A unique subunit related to ξ. J Biol Chem 1989;264:14812–14817.

    PubMed  CAS  Google Scholar 

  66. Jin YJ, Clayton LK, Howard FD, Koyasu S, Sieh M, Steinbrich R, Tarr GE, Reinherz EL: Molecular cloning of the CD3η subunit identifies a CD3ξ-related product in thymus-derived cells. Proc Natl Acad Sci USA 1990;87:3319–3323.

    Article  PubMed  CAS  Google Scholar 

  67. Clayton LK, Bauer A, Jin YJ, D’Adamino L, Koyasu S, Reinherz EL: Characterization of thymus-derived lymphocytes expressing Tiα-βCD3γδ∈ξ-ξ, Tiα-βCD3γδ∈η-η, or Tiα-βCD3γδ∈ξ-ξ/ξ-η antigen receptor isoforms: Analysis by gene transfection. J Exp Med 1990;172:1243–1253.

    Article  PubMed  CAS  Google Scholar 

  68. Robinson PJ, Millrain M, Antoniou J, Simpson E, Mellor AL: A glycophospholipid anchor is required for Qa-2-mediated T cell activation. Nature 1989;342:85–87.

    Article  PubMed  CAS  Google Scholar 

  69. Saltiel AR, Osterman DG, Darnell JC, Chan BL, Sorbara-Cazan LR: The role of glycosylphosphoinositides in signal transduction. Recent Prog Horm Res 1989;45:353–379.

    PubMed  CAS  Google Scholar 

  70. Eardley DD, Koshland ME: Glycosylphosphatiylinositol: A candidate system for interleukin-2 signal transduction. Science 1991;251:78–81.

    Article  PubMed  CAS  Google Scholar 

  71. Gresham HD, Zheleznyak A, Mormol JS, Brown EJ: Studies on the molecular mechanisms of human neutrophil Fc receptor-mediated phagocytosis. J Biol Chem 1990; 265:7819–7826.

    PubMed  CAS  Google Scholar 

  72. Ceuppens JL, Baroja ML, Van Vaeck F, Anderson CL: A defect in the membrane expression of high affinity 72 kD Fc receptors on phagocytic cells in four healthy subjects. J Clin Invest 1988;82:571–578.

    Article  PubMed  CAS  Google Scholar 

  73. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R: β2 Microglobulin deficient mice lack CD48+ cytolytic T cells. Nature 1990;344:742–746.

    Article  PubMed  CAS  Google Scholar 

  74. Parham P: Immunology: Some savage cuts in defense. Nature 1990; 344:709–711.

    Article  PubMed  CAS  Google Scholar 

  75. Williams AF, Barclay AN: The immunoglobulin superfamily: Domains for cell surface recognition. Annu Rev Immunol 1988;6:381–405.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edberg, J.C., Salmon, J.E. & Kimberly, R.P. Functional capacity of Fcγ receptor III (CD16) on human neutrophils. Immunol Res 11, 239–251 (1992). https://doi.org/10.1007/BF02919130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02919130

Key Words

Navigation