Skip to main content
Log in

New human colorectal carcinoma cell lines that secrete proteinase inhibitors in vitro

  • Published:
Virchows Archiv B

Summary

Two new human cell lines, RCM-1 and CoCM-1, have been established from primary colorectal adenocarcinomas. Both cell lines were unique in that the cultures secreted trypsin inhibitors in vitro. The activities of these inhibitors were accumulated in serum-free media of both cell lines over a period of several days. Two inhibitors (PI-1 and PI-2) were isolated from serum-free conditioned medium in which RCM-1 was grown by anion-exchange and gel filtration high-performance liquid chromatography. PI-1 inhibited trypsin and chymotrypsin strongly, and pancreatic elastase weakly. Its molecular weight was about 57 kilodaltons (Kd) as determined by gel filtration chromatography. It cross-reacted with the antiserum elicited against human α1-antitrypsin in double immunodiffusion. PI-1 corresponding to α1 - antitrypsin was also demonstrated immunohistochemically in both cell lines. PI-2 inhibited trypsin strongly, and chymotrypsin, kallikrein and plasmin weakly. It had higher molecular weight (200–300 Kd) than that of PI-1, and did not crossreact with antisera against human α1-antitrypsin, α2-macroglobulin, α1-antichymotrypsin, α2-plasmin inhibitor, inter-α-trypsin inhibitor and urinary trypsin inhibitor. RCM-1 and CoCM-1 are the first colorectal adenocarcinoma cell lines that secrete functionally active trypsin inhibitors, including α1-antitrypsin in vitro, and are useful for the study of tumor-cell derived proteinase inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ades EW, Hinson A, Chapuis-Cellier C. Arnaud P (1982) Modulation of the immune response by plasma protease inhibitors. I. Alpha2-macroglobulin and alpha1-antitrypsin inhibit natural killing and antibody-dependent cell-mediated cytotoxicity. Scand J Immunol 15:109–113

    Article  PubMed  CAS  Google Scholar 

  • Aroni K, Kittas C, Papadimitriou CS, Papacharalampous NX (1984) An immunocytochemical study of the distribution of lysozyme, α1-antitrypsin and α1-antichymotrypsin in the normal and pathological gall bladder. Virchows Arch [Pathol Anat] 403:281–289

    Article  CAS  Google Scholar 

  • Arora PK, Miller HC, Aronson LD (1978) α1-Antitrypsin is an effector of immunological stasis. Nature 274:589–590

    Article  PubMed  CAS  Google Scholar 

  • Bieth J, Spiess B, Wermuth CG (1974) The synthesis and analytical use of a highly sensitive and convenient substrate of elastase. Biochem Med 11:350–357

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brattain MG, Fine WD, Khaled FM, Thompson J, Brattain DE (1981) Heterogeneity of malignant cells from a human colonic carcinoma. Cancer Res 41:1751–1756

    PubMed  CAS  Google Scholar 

  • Carlson J, Eriksson S, Alm R, Kjellström T (1984) Biosynthesis of abnormally glycosylated α1-antitrypsin by a human hepatoma cell line. Hepatology 4:235–241

    PubMed  CAS  Google Scholar 

  • Chawla RK, Lawson DH, Sarma PR, Nixson DW, Travis J (1987) Serum α-1 proteinase inhibitor in advanced cancer: mass variants and functionally inert forms. Cancer Res 47:1179–1184

    PubMed  CAS  Google Scholar 

  • Cheung A, Lau HKF (1986) Isolation and partial characterization of a proteinase inhibitor from human colorectal adenocarcinoma. Biochim Biophys Acta 882:200–209

    PubMed  CAS  Google Scholar 

  • Cooper EH, Turner R, Geekie A (1976) Alphaglobulins in the surveillance of colorectal cancer. Biomedicine 24:171–178

    PubMed  CAS  Google Scholar 

  • van Dam-Mieras MCE, Muller AD, van Dieijen G, Hemker HC (1984) Blood coagulation factors II, V, VII, VIII, IX, X and XI: determination with synthetic substrates. In: Bergmeyer HU, Bergmeyer J, Grasßl M (eds) Methods of enzymatic analysis, vol. V. Verlag Chemie GmbH, Weinheim, pp 365–394

    Google Scholar 

  • Freiberger P (1982) Chromogenic peptide substrates: their use for the assay of factors in the fibrinolytic and the plasma kallikrein-kinin systems. Scand J Clin Lab Invest 42 [Suppl. 162]: 1–98

    Google Scholar 

  • Glasgow JE, Bagdasarian A, Colman RW (1982) Functional alpha1 protease inhibitor produced by a human hepatoma cell line. J Lab Clin Med 99:108–117

    PubMed  CAS  Google Scholar 

  • Harris CC, Primack A, Cohen MH (1974) Elevated alpha1- antitrypsin serum levels in lung cancer patients. Cancer 34:280–281

    Article  PubMed  CAS  Google Scholar 

  • Hudig D, Gregg NJ, Kam CM, Powers JC (1987) Lymphocyte granule-mediated cytolysis requires serine protease activity. Biochem Biophys Res Comm 149:882–888

    Article  PubMed  CAS  Google Scholar 

  • Ishihara A, Nabeshima K, Koono M (1986) Partial purification and characterization of serum protease from tumor-bearing rats which cleaves type IV collagen. Invasion Metastasis 6:225–245

    PubMed  CAS  Google Scholar 

  • Kittas C, Aroni K, Kotsis L, Papadimitriou CS (1982) Distribution of lysozyme, a1-antichymotrypsin and a1-antitrypsin in adenocarcinomas of the stomach and large intestine: an immunohistochemical study. Virchows Arch [Pathol Anat] 398:139–147

    Article  CAS  Google Scholar 

  • Matoska J, Wahlström T, Vaheri A, Bízik J, Grófová M (1988) Tumor-associated alpha-2-macroglobulin in human melanomas. Int J Cancer 41:359–363

    Article  PubMed  CAS  Google Scholar 

  • Matsuda K, Ogawa M, Murata A, Kitahara T, Kosaki G (1983) Elevation of serum immunoreactive pancreatic secretory trypsin inhibitor contents in various malignant diseases. Res Commun Chem Pathol Pharmacol 40:301–305

    PubMed  CAS  Google Scholar 

  • Okumichi T, Nishiki M, Takasugi S, Toki N, Ezaki H (1984) Isolation of urinary trypsin inhibitor-like inhibitor from human lung cancer tissue. Cancer Res 44:2011–2015

    PubMed  CAS  Google Scholar 

  • Palmer PE, Safaii H, Wolfe HJ (1976) Alpha 1-antitrypsin and alpha-fetoprotein. Protein markers in endodermal sinus (yolk sac) tumors. Am J Clin Pathol 65:575–582

    PubMed  CAS  Google Scholar 

  • Park JG, Oie HK, Sugarbaker PH, Henslee JG, Chen TR, Johnson BE, Gazdar A (1987) Characteristics of cell lines established from human colorectal carcinoma. Cancer Res 47:6710–6718

    PubMed  CAS  Google Scholar 

  • Pauli BU, Kuettner KE (1984) Host tissue resistance to tumor invasion. In: Mareel MM, Caiman KC (eds) Invasion: experimental and clinical implications. Oxford University Press, London, pp 205–227

    Google Scholar 

  • Redelman D, Hudig D (1980) The mechanism of cell-mediated cytotoxicity. I. Killing by murine cytotoxic T lymphocytes requires cell surface thiols and activated proteases. J Immunol 124:870–878

    PubMed  CAS  Google Scholar 

  • Sawaya R, Zuccarello M, Highsmith R (1987) Alpha-1-antitrypsin in human brain tumors. J Neurosurg 67:258–262

    Article  PubMed  CAS  Google Scholar 

  • Somorin O, Tokura S, Nishi N, Noguchi T (1979) The action of trypsin on synthetic chromogenic arginine substrates. J Biochem 85:157–162

    PubMed  CAS  Google Scholar 

  • Suzumiya J, Hasui Y, Kohga S, Sumiyoshi A, Hashida S, Ishikawa E (1988) Comparative study of plasminogen activator antigens in colonic carcinomas and adenomas. Int J Cancer 42:627–632

    Article  PubMed  CAS  Google Scholar 

  • Tahara E, Ito H, Taniyama K, Yokozaki H, Hata J (1984) Alpha1-antitrypsin, alpha1-antichymotrypsin, and alpha2-macroglobulin in human gastric carcinomas: A retrospective immunohistochemical study. Hum Pathol 15:957–964

    Article  PubMed  CAS  Google Scholar 

  • Tryggvason K, Höyhtyä M, Salo T (1987) Proteolytic degradation of extracellular matrix in tumor invasion. Biochim Biophys Acta 907:191–217

    PubMed  CAS  Google Scholar 

  • Vaughan L, Lorier MA, Carrell RW (1982) α1-Antitrypsin microheterogeneity, isolation and physiological significance of isoforms. Biochim Biophys Acta 701:339–345

    PubMed  CAS  Google Scholar 

  • Wittekind Ch, Wachner R, Henke W, von Kleist S (1986) Localization of CEA, HCG, lysozyme, alpha-1-antitrypsin, and alpha-1-antichymotrypsin in gastric cancer and prognosis. Virchows Arch [Pathol Anat] 409:715–724

    Article  CAS  Google Scholar 

  • Yoshimura S, Tamaoki N, Ueyama Y, Hata J (1978) Plasma protein production by human tumors xenotransplanted in nude mice. Cancer Res 38:3474–3478

    PubMed  CAS  Google Scholar 

  • Zuccarello M, Sawaya R, Ray MB (1987) Immunohistochemical demonstration of alpha-1-proteinase inhibitor in brain tumors. Cancer 60:804–809

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataoka, H., Nabeshima, K., Komada, N. et al. New human colorectal carcinoma cell lines that secrete proteinase inhibitors in vitro. Virchows Archiv B Cell Pathol 57, 157–165 (1989). https://doi.org/10.1007/BF02899077

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899077

Key words

Navigation