Skip to main content
Log in

Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in Copper-depleted and repleted rats

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; <1 mg Cu/kg), marginal (MAR; 2 mg Cu/kg), or control (CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON;p≤0.05) in the DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0–3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p≤.05) in the DEF group, increased to control activity after 1 d of CuS and declined slighty after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p≤0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Linder, inBiochemistry of Elements, E. Freiden, ed., Plenum, New York, pp. 241–296 (1991).

    Google Scholar 

  2. D. T. Gordon, A. S. Leinart, and R. J. Cousins,Am. J. Physiol. 252, E327 (1987).

    PubMed  CAS  Google Scholar 

  3. S. H. Lee, R. Lancey, A. Montaser, N. Madani, and M. C. Linder,Proc. Soc. Exp. Biol. Med. 203, 428 (1993).

    PubMed  CAS  Google Scholar 

  4. E. Freiden, inCiba Foundation Symposium #79, Excerpta Medica, Amsterdam, pp. 93–124.

  5. J. V. Bannister, W. H. Bannister, and G. Rotillio,CRC Rev. Biochem. 22, 111 (1987).

    Article  CAS  Google Scholar 

  6. J. R. Prohaska, inEssential and Toxic Trace Elements in Human Health and Disease, A. S. Prasad, ed., Liss, New York, pp 105–124 (1988).

    Google Scholar 

  7. N. A. Holtzman and B. M. Gaumnitz,J. Biol. Chem. 245, 2345 (1970).

    Google Scholar 

  8. P. E. Johnson and D-H. Lee,J. Trace Elem. Exp. Med. 1, 129 (1987).

    Google Scholar 

  9. D. L. Paynter, R. J. Moir, and E. J. Underwood,J. Nutr. 109, 355 (1979).

    Google Scholar 

  10. J. R. Prohaska,J. Nutr. 109, 1570 (1991).

    Google Scholar 

  11. R. A. DiSilvestro,Arch. Biochem. Biophys. 274, 296 (1989).

    Article  Google Scholar 

  12. D. M. Danks,Ann. Rev. Nutr. 8, 238 (1988).

    Google Scholar 

  13. P. W. F. Fischer, M. R. L'Abbe, and A. Giroux,Nutr. Res. 10, 1081, (1990).

    Article  CAS  Google Scholar 

  14. R. A. Wapnir and S-Y. Lee,J. Am. Coll. Nutr. 12, 714 (1993).

    PubMed  CAS  Google Scholar 

  15. P. G. Reeves, K. L. Rossow, and D. J. Bobilya,Nutr. Res. 13, 1419, (1993).

    Article  CAS  Google Scholar 

  16. P. W. F. Fischer, J. S. Campbell, and A. Giroux,Biol. Trace. Elem. Res. 30, 65 (1990).

    Article  Google Scholar 

  17. J. G. Biesii, Chairman, Ad hoc. committee on standards for nutritional studies,J. Nutr. 110, 1726 (1980).

    Google Scholar 

  18. Y. Sun, L. W. Oberley, and Y. Li,Clin. Chem. 34, 497 (1988).

    PubMed  CAS  Google Scholar 

  19. W. F. Sunderman and S. Nomoto,Clin. Chem. 16, 905 (1970).

    Google Scholar 

  20. R. C. J. A. M. Hoogeven, S. K. Reaves, P. M. Reid, B. L. Reid, and K. Y. Lee,J. Nutr. 124, 1660 (1994).

    Google Scholar 

  21. F. Van Houwelingen, G. J. Van der berg, A. G. Lemmens, K. W. Sijtsma, and A. C. Beynen,Biol. Trace. Elem. Res. 38, 83 (1993).

    Article  PubMed  Google Scholar 

  22. W. T. Johnson, S. N. Dufault, and A. C. Thomas,Nutr. Res. 13, 1153 (1993).

    Article  CAS  Google Scholar 

  23. G. J. Van der Berg, J. M. De Goij, I. Bock, M. J. J. Gubbels, A. Brouwer, K. Y. Lei, and F. J. Hendrik,J. Nutr. 121, 1228 (1991).

    PubMed  Google Scholar 

  24. T. Ogiso, K. Mariyama, S. Sasaki, Y. Ishimura, and A. Minato,Chem. Phar. Bull. 22, 55 (1974).

    CAS  Google Scholar 

  25. P. W. F. Fischer, A. Giroux, and M. R. L'Abbe,J. Nutr. 113, 462 (1983).

    PubMed  CAS  Google Scholar 

  26. P. W. F. Fischer, A. Giroux, and M. R. L'Abbe,Am. J. Clin. Nutr. 34, 1670 (1981).

    PubMed  CAS  Google Scholar 

  27. H. J. McArdle, J. F. B. Mercer, A. M. Sargeson, and D. M. Danks,J. Nutr. 120, 1370 (1990).

    PubMed  CAS  Google Scholar 

  28. R. J. DiSilvestro,Nutr. Res. 10, 355 (1990).

    Article  CAS  Google Scholar 

  29. M. C. Linder, P. A. Harle, E. Isaacs, J. R. Moor and L. E. Scott,Enzyme 24, 23 (1981).

    Google Scholar 

  30. C. H. Campbell, R. Brown, and M. C. Linder,Biochem. Biophys. Acta 678, 27 (1981).

    PubMed  CAS  Google Scholar 

  31. D. B. Milne,Clin. Chem. 40, 1479 (1994).

    PubMed  CAS  Google Scholar 

  32. S. L. Marklund, E. Holme, and L. Hellner,Clin. Chim. Acta. 126, 41 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. S. L. Marklund,Proc. Natl. Acad. Sci. USA 79, 7684 (1982).

    Article  Google Scholar 

  34. R. J. DiSilvestro,J. Nutr. 118, 474, (1988).

    PubMed  CAS  Google Scholar 

  35. S. L. Marklund,Biochem. J. 222, 649 (1984).

    PubMed  CAS  Google Scholar 

  36. W. J. Bettger, J. E. Savage, and B. L. O'Dell,Nutr. Rep. Int. 23, 893 (1979).

    Google Scholar 

  37. S. Reiser, J. C. Smith, W. Mertz, J. T. Holbrook, D. J. Scholfield, A. S. Powell, W. K. Canfield, and J. J. Canary,Am. J. Clin. Nutr. 42, 242 (1985).

    PubMed  CAS  Google Scholar 

  38. R. Uauy, C. Castillo-Duran, M. Fisberg, N. Fernandez, and A. Valenzuela,J. Nutr. 155, 1650 (1985).

    Google Scholar 

  39. C. T. Dameron and E. D. Harris,Biochem. J. 248, 269 (1987).

    Google Scholar 

  40. M. R. L'Abbe and P. W. F. Fischer,J. Nutr. 114, 813 (1984).

    PubMed  Google Scholar 

  41. M. R. L'Abbe and P. W. F. Fischer,J. Nutr. 114, 823 (1984).

    PubMed  Google Scholar 

  42. K. Chung, N. Romero, D. Tinker, C. L. Keen, K. Amemiya, and R. Rucker,J. Nutr. 118, 859 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myna Panemangalore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panemangalore, M., Bebe, F.N. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in Copper-depleted and repleted rats. Biol Trace Elem Res 55, 111–126 (1996). https://doi.org/10.1007/BF02784173

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02784173

Index Entries

Navigation