Skip to main content
Log in

Skin equivalent produced with human collagen

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Several studies have recently been conducted on cultured skin equivalent (SE), prepared using human keratinocytes seeded on various types of dermal equivalents (DE). We previously showed the advantages of our anchorage method in preventing the severe surface reduction of DE due to fibroblast contractile properties in vitro. A new anchored human SE was established in our laboratory in order to obtain a bioengineered tissue that would possess the appropriate histological and biological properties. In order to compare the effects of different collagen origins on the evolution of SE in vitro, human keratinocytes were seeded on three types of anchored DE. A comparative study was carried out between bovine SE (bSE), human SE (hSE), and human skin equivalent containing additional dermal matrix components (hSE +). Immunohistological analysis showed that hSE and hSE+ presented good structural organization, including the deposition of several basement membrane constituents. Higher amounts of transglutaminase, ceramides, and keratin 1 were detected in the epidermal layers of all SE when cultured at the air-liquid interface. However, a 92 kDa gelatinase activity was higher in bovine skin equivalent (bSE) compared to hSE cultures. The use of human collagens comparatively to bovine collagen as SE matricial component delayed the degradation of the dermal layer in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auger, F. A. The role of cultured autologous human epithelium in large burn wound treatment. Transplantation/Implantation Today 5:21–24 May 1988.

    Google Scholar 

  2. Auger, F. A.; Guignard, R.; López Valle, C. A., et al. Role and inocuity of Tisseel®, a tissue glue, in the grafting process andin vivo evolution of human cultured epidermis. Br. J. Plast. Surg. 46:136–142; 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Bailly, C.; Drèza, S.; Asselineau, D., et al. Retinoic acid inhibits the production of collagenase by human epidermal keratinocytes. J. Invest. Dermatol. 94:47–51; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Bell, E.; Ehrlich, H. P.; Buttle, D. J., et al. Living tissue formedin vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054; 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Bell, E.; Ivarsson, B.; Merrill, C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potentialin vitro. Proc. Natl. Acad. Sci. USA 76:1274–1278; 1979.

    Article  PubMed  CAS  Google Scholar 

  6. Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    PubMed  CAS  Google Scholar 

  7. Bouvard, V.; Germain, L.; Rompré, P., et al. Influence of dermal equivalent maturation on a skin equivalent development. Biochem. Cell Biol. 70:34–42; 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Boyce, S. T.; Foreman, T. J.; English, K. B., et al. Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors. Surgery 110:866–876; 1991.

    PubMed  CAS  Google Scholar 

  9. Chiocchia, G.; Boissier, M. C.; Ronziere, M. C., et al. T cell regulation of collagen-induced arthritis in mice. J. Immunol. 145:519–525; 1990.

    PubMed  CAS  Google Scholar 

  10. Compton, C. C.; Gill, J. M.; Bradford, D. A., et al. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting: a light, electron microscopic and immunohistochemical study. Lab. Invest. 60:600–612; 1989.

    PubMed  CAS  Google Scholar 

  11. Contard, P.; Bartel, R. L.; Jacobs, L., II., et al. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal lamina-anchoring zone. J. Invest. Dermatol. 100:35–39; 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Ehrmann, R. L.; Gey, G. O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J. Natl. Cancer Inst. 16:1375–1403; 1956.

    PubMed  CAS  Google Scholar 

  13. Franzi, A. T.; D’Anna, F.; Zicca, A., et al. Histological evaluation of human cultured epithelium before and after grafting. Burns 18:S26-S31; 1992.

    Article  PubMed  Google Scholar 

  14. Fuchs, E. Epidermal differentiation: the bare essentials. J. Cell Biol. 111:2807–2814; 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Geesin, J. C.; Brown, L. J.; Gordon, J. S., et al. Regulation of collagen synthesis in human dermal fibroblasts in contracted gels by ascorbic acid, growth factors, and inhibitors of lipids peroxidation. Exp. Cell Res. 206:283–290; 1993.

    Article  CAS  Google Scholar 

  16. Germain, L.; Rouabhia, M.; Guignard, R., et al. Improvement of human keratinocyte isolation and culture using thermolysin. Burns 19:99–104; 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 76:5665–5668; 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Hansbrough, J. F.; Boyce, S. T.; Cooper, M. L., et al. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 262:2125–2130; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Heussen, C.; Dowdle, E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal. Biochem. 102:196–202; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Hom, J. T.; Bendele, A. M.; Carlson, D. G. In vivo administration with IL-1 accelerates the development of collagen-induced arthritis in mice. J. Immunol. 141:834–841; 1988.

    PubMed  CAS  Google Scholar 

  21. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  22. López Valle, C. A.; Auger, F. A.; Rompré, P., et al. Peripheral anchorage of dermal equivalents. Br. J. Dermatol. 127:365–371; 1992.

    Article  PubMed  Google Scholar 

  23. Michel, M.; Auger, F. A.; Germain, L. Anchored skin equivalent culturedin vitro: a new tool for percutaneous absorption studies. In Vitro Cell. Dev. Biol. 29A:834–837; 1993.

    Article  CAS  Google Scholar 

  24. Moll, R.; Franke, W. W.; Schiller, D. L. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Oikarinen, A.; Kylmäniemi, M.; Autio-Harmainen, H., et al. Demonstration of 72-kDa and 92-kDa forms of type IV collagenase in human skin: variable expression in various blistering diseases, induction during re-epithelialization, and decrease by topical glucocorticoids. J. Invest. Dermatol. 101:205–210; 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Ponec, M. Reconstruction of human epidermis on de-epidermized dermis: expression of differentiation-specific protein markers and lipid composition. Toxic. In Vitro 5:597–606; 1991.

    Article  CAS  Google Scholar 

  27. Ponec, M.; Weerheim, A.; Kempenaar, J., et al. Lipid composition of cultured human keratinocytes in relation to their differentiation. J. Lipid Res. 29:949–961; 1988.

    PubMed  CAS  Google Scholar 

  28. Régnier, M.; Darmon, M. Human epidermis reconstructed in vitro: a model to study keratinocyte differentiation and its modulation by retinoic acid. In Vitro Cell. Dev. Biol. 25:1000–1008; 1989.

    Article  PubMed  Google Scholar 

  29. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.

    Article  PubMed  CAS  Google Scholar 

  30. Tinois, E.; Tiollier, J.; Gaucherand, M., et al.In vitro and post-transplantation differentiation of human keratinocytes grown on the human Type IV collagen film of a bilayered dermal substitute. Exp. Cell Res. 193:310–319; 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Tiollier, J.; Dumas, H.; Tardy, M., et al. Fibroblast behavior on gels of type I, III and IV human placental collagens. Exp. Cell Res. 191:95–104; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Woodley, D. T.; Yamauchi, M.; Kimberley, C. W., et al. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction. J. Invest. Dermatol. 97:580–585; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auger, F.A., López Valle, C.A., Guignard, R. et al. Skin equivalent produced with human collagen. In Vitro Cell Dev Biol - Animal 31, 432–439 (1995). https://doi.org/10.1007/BF02634255

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634255

Key words

Navigation