Skip to main content
Log in

HPAC, a new human glucocorticoid-sensitive pancreatic ductal adenocarcinoma cell line

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A new human pancreatic cancer (HPAC) cell line was established from a nude mouse xenograft (CAP) of a primary human pancreatic ductal adenocarcinoma. In culture, HPAC cells form monolayers of morphologically heterogenous, polar epithelial cells, which synthesize carcinoembryonic antigen, CA 19-9, CA-125, cytokeratins, antigens for DU-PAN-2, HMFG1, and AUA1, but do not express chromogranin A or vimentin indicative of their pancreatic ductal epithelial cell character. In the presence of serum, HPAC cell DNA synthesis was stimulated by insulin, insulin growth factor-I, epidermal growth factor, and TGF-α but inhibited by physiologic concentrations of hydrocortisone and dexamethasone. Dose-dependent inhibition of DNA synthesis was limited to steroids with glucocorticoid activity. The inhibitory effect of dexamethasone was abolished by the glucocorticoid antagonist RU 38486. Binding of [3H]dexamethasone to cytosolic proteins was specific and saturable at 4° C. Scatchard analysis of binding data demonstrated a single class of high-affinity binding sites (Kd=3.8±0.9 nM; Bmax=523±128 fmol/mg protein). Western blot analysis revealed a major protein band that migrated at a Mr of 96 kDa. Northern blot analysis identified an mRNA of approximately 7 kilobases which hybridized with a specific glucocorticoid receptor complementary DNA probe (OB7). These findings support a role for glucocorticoids in the regulation of human malignant pancreatic cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andren-Sandberg, A. Steroid receptors in pancreatic cancer, a review. In: Preece, P. E.; Cuschieri, A.; Rosin, R. D., eds. Cancer of the bile ducts and pancreas. Philadelphia, PA: W. B. Saunders, Co.; 1989.

    Google Scholar 

  2. Arklie, J. Studies of human epithelial cell surface using monoclonal antibodies. D. Phil. England: Oxford Univ.; 1981. Dissertation.

    Google Scholar 

  3. Beauchamp, R. D.; Lyons, R. M.; Yang, E. Y., et al. Expression of and response to growth regulatory peptides by two human pancreatic carcinoma cell lines. Pancreas 5:369–380; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Benz, C.; Hollander, C.; Miller, B. Endocrine-responsive pancreatic carcinoma: steroid binding and cytotoxicity studies in human tumor cell lines. Cancer Res. 46:2276–2281; 1986.

    PubMed  CAS  Google Scholar 

  5. Borowitz, M. J.; Tuck, F. L.; Sindelar, W. F., et al. Monoclonal antibodies against pancreatic adenocarcinoma: distribution of DU-PAN-2 antigen on glandular epithelia and adenocarcinomas. JNCI 72:999–1005; 1984.

    PubMed  CAS  Google Scholar 

  6. Brons, G.; Newby, A. C.; Hales, C. N. Glucocorticoids stimulate the division of rat pancreatic islet tumor cells in tissue culture. Diabetologia 27:540–544; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Burnstein, K. L.; Bellingham, D. L.; Jewell, C. M., et al. Autoregulation of glucocorticoid receptor gene expression. Steroids 56:52–58; 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Cidlowski, J. A.; Michaels, G. A. Alteration in glucocorticoid binding site number during the cell cycle in HeLa cells. Nature 266:643–645; 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Dexter, D. L.; Matook, G. M.; Meitner, P. A., et al. Establishment and characterization of two human pancreatic cancer cell lines tumorigenic in athymic mice. Cancer Res. 42:2705–2714; 1982.

    PubMed  CAS  Google Scholar 

  10. DiSorbo, D. M. Effect of triamcinolone acetonide on the growth of NEL-M1 human melanoma cells cultured in the presence and absence of growth stimulatory agents. Cancer Res. 46:3964–3968; 1986.

    PubMed  CAS  Google Scholar 

  11. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240:889–895; 1985.

    Article  Google Scholar 

  12. Frazier, M. L.; Pathak, S.; Wang, Z-W., et al. Establishment of a new human pancreatic adenocarcinoma cell line, MDAPanc-3. Pancreas 5:8–16; 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Gomi, M.; Moriwaki, K.; Katagiri, S., et al. Glucocorticoid effects on myeloma cells in culture: correlation of growth inhibition with induction of glucocorticoid receptor messenger RNA. Cancer Res, 50:1873–1878; 1990.

    PubMed  CAS  Google Scholar 

  14. Gower, W. R., Jr.; Ellison, E. C.; Knierim, T. H., et al. Gastrinoma in vitro: morphological and physiological studies of primary cell cultures. Gastroenterology 98:936–954; 1990.

    PubMed  Google Scholar 

  15. Guthrie, J.; Williams, J. A.; Logsdon, C. D. Growth and differentiation of pancreatic acinar cells: independent effects of glucocorticoids on AR42J cells. Pancreas 6:506–513; 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Harmon, J. M.; Elsasser, M. S.; Eisen, L. P., et al. Glucocorticoid receptor expression in receptorless mutants isolated from the human leukemic cell line CEM-C7. Mol. Endocrinol. 3:734–743; 1989.

    PubMed  CAS  Google Scholar 

  17. Hollenberg, S. M.; Weinberger, C.; Ong, E. S., et al. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318:635–641; 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Kapuscinski, J.; Skoczylas, B. Simple and rapid fluorimetric method form DNA microassay. Anal. Biochem. 83:252–257; 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Klöppel, G. Cancer of the pancreas: morphological and biological aspects. In: Preece, P. E.; Cuschieri, A.; Rosin, R. D., eds. Cancer of the bile ducts and pancreas. Philadelphia, PA: W. B. Saunders, Co.; 1989.

    Google Scholar 

  20. Korc, M.; Meltzer, P.; Trent, J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc. Natl. Acad. Sci. USA 83:5141–5144; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Kyriazis, A. P.; Kyriazis, A. A.; Scarpelli, D. G., et al. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse. Am. J. Pathol. 106:250–260; 1982.

    PubMed  CAS  Google Scholar 

  22. Kyriazis, A. A.; Kyriazis, A. P.; Sternberg, C. N., et al. Morphological, biological, biochemical, and karyotypic characteristics of human pancreatic ductal adenocarcinoma Capan-2 in tissue culture and the nude mouse. Cancer Res. 46:5810–5815; 1986.

    PubMed  CAS  Google Scholar 

  23. Kyriazis, A. P.; McCombs, W. B.; Sandberg, A. A., et al. Establishment and characterization of human pancreatic carcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res. 43:4393–4401; 1983.

    PubMed  CAS  Google Scholar 

  24. Liehr, R-M.; Melnykovych, G.; Solomon, T. E. Growth effects of regulatory peptides on human pancreatic lines PANC-1 and MIA PaCa-2. Gastrenterology 98:1666–1674; 1990.

    CAS  Google Scholar 

  25. Lippman, M. Clinical implications of glucocorticoid receptors in human leukemia. Am. J. Physiol. 243:E103-E108; 1982.

    PubMed  CAS  Google Scholar 

  26. Logsdon, C. D.; Moessner, J.; Williams, J. A., et al. Glucocorticoids increase amylase mRNA levels, secretory organelles, and-secretion in pancreatic acinar AR42J cells. J. Cell Biol. 100:1200–1208; 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Logsdon, C. D.; Williams, J. A. Pancreatic acini in short-term culture: regulation by EGF, carbachol, insulin, and corticosterone. Am. J. Physiol. 244:G675-G682; 1983.

    PubMed  CAS  Google Scholar 

  28. Longnecker, D. S. Hormones and receptors in gastrointestinal malignancies. Digestion 46(suppl 2):92–98; 1990.

    PubMed  CAS  Google Scholar 

  29. Moguilewsky, M.; Philibert, D. RU 38486: potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by impaired activation. J. Steroid Biochem. 20:271–276; 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Montiel, F.; Ortiz-Caro, J.; Villa, A., et al. Glucocorticoids regulate insulin binding in a rat glial cell line. Endocrinology 121:258–265; 1987.

    PubMed  CAS  Google Scholar 

  31. Oberg, K. C.; Carpenter, G. Dexamethasone acts as a negative regulator of epidermal growth factor receptor synthesis in fetal rat lung cells. Mol. Endocrinol. 3:915–922; 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Ohmura, E.; Okada, M.; Onoda, N., et al. Insulin-like growth factor I and transforming growth factor α as autocrine growth factors in human pancreatic cancer cell growth. Cancer Res. 50:103–107; 1990.

    PubMed  CAS  Google Scholar 

  33. Rao, K. V. S.; Williams, R. E.; Fox, C. F. Altered glucocorticoid binding and action in response to epidermal growth factor in HBL100 cells. Cancer Res. 47:5888–5893; 1987.

    PubMed  CAS  Google Scholar 

  34. Rosewicz, S.; McDonald, A. R.; Maddux, B. A., et al. Mechanism of glucocorticoid receptor down-regulation by glucocorticoids. J. Biol. Chem. 263:2581–2584; 1988.

    PubMed  CAS  Google Scholar 

  35. Rousseau, G. G.; Baxter, J. D.; Tomkins, G. M. Glucocorticoid receptors: relations between steroid binding and biological effects. J. Mol. Biol. 67:99–115; 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Sandgren, E. P.; Quaife, C. J.; Paulovich, A. G., et al. Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc. Natl. Acad. Sci. USA 88:93–97; 1991.

    Article  PubMed  CAS  Google Scholar 

  37. Scatchard, G. The attraction of proteins for small molecules and ions. Ann. NY Acad. Sci 51:660–672; 1949.

    Article  CAS  Google Scholar 

  38. Seabright, M. A. A rapid banding technique for human chromosomes. Lancet 2:971–972; 1971.

    Article  PubMed  CAS  Google Scholar 

  39. Smith, J. J.; Derynck, R.; Korc, M. Production of transforming growth factor α in human pancreatic cancer cells: evidence for a superagonist autocrine cycle. Proc. Natl. Acad. Sci. USA 83:7567–7570; 1986.

    Google Scholar 

  40. Srivastava, D.; Thompson, E. B. Two glucocorticoid binding sites on the human glucocorticoid receptor. Endocrinology 127:1770–1778; 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Svec, F.; Rudis, M. Glucocorticoid hormone receptors in rat pancreas. Biochim. Biophys. Acta 674:30–36; 1981.

    PubMed  CAS  Google Scholar 

  42. Swarovsky, B.; Steinhilber, W.; Scheele, G. A., et al. Coupled induction of exocrine proteins and intracellular compartments involved in the secretory pathway in AR42J cells by glucocorticoids. Eur. J. Cell Biol. 47:101–111; 1988.

    PubMed  CAS  Google Scholar 

  43. Takuma, T.; Nakanishi, M.; Takagi, Y., et al. Precocious differentiation of mouse parotid glands and pancreas induced by hormones. Biochim. Biophys. Acta 538:376–383; 1978.

    PubMed  CAS  Google Scholar 

  44. Tan, M. H.; Nowak, N. J.; Loor, R., et al. Characterization of a new primary human pancreatic tumor line. Cancer Invest. 4:15–23; 1986.

    PubMed  CAS  Google Scholar 

  45. Taylor-Papadimetriou, J.; Peterson, J. A.; Arklie, J., et al. Monoclonal antibodies to epithelium-specific components of milk fat globule membrane: production and reaction with cells in culture. Int. J. Cancer 28:17–21; 1981.

    Article  Google Scholar 

  46. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  47. Webster, M. K.; Guthrie, J.; Firestone, G. L. Suppression of rat mammary tumor cell growthin vitro by glucocorticoids requires serum proteins: characterization of wild type and glucocorticoid-resistant epithelial tumor cells. J. Biol. Chem. 265:4831–4838; 1990.

    PubMed  CAS  Google Scholar 

  48. Werlin, S. L.; Stefaniak, J. Effects of hydrocortisone and cholecystokinin-octapeptide on neonatal rat pancreas. J. Pediatr. Gastroenterol. Nutr. 1:591–595; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gower, W.R., Risch, R.M., Godellas, C.V. et al. HPAC, a new human glucocorticoid-sensitive pancreatic ductal adenocarcinoma cell line. In Vitro Cell Dev Biol - Animal 30, 151–161 (1994). https://doi.org/10.1007/BF02631438

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631438

Key words

Navigation