Skip to main content
Log in

Serum-free culture of fractionated bovine bronchial epithelial cells

  • Begular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Procedures for the serum-free culture of a density fractionated population of bovine bronchial epithelial cells have been established. Epithelial cells dispersed by protease digestion were fractionated by density equilibrium centrifugation, followed by plating of the small basal-like population on type I collagen-coated culture dishes. Two or three passages of 1:4 split enriched for a population of actively dividing cells, which could be stored in liquid nitrogen for subsequent use. Clonal growth assays revealed optimum proliferation using a 1:1 mixture of medium RPMI 1640 and LHC-9, a medium employed for human bronchial epithelial cells. Cellular growth rate, which was 0.6 to 1.3 doublings per day depending on the cell preparation, was conveniently decreased by supplementing LHC-9 medium with less than 50% RPMI. In contrast to airway epithelial cell cultures from other species, serum stimulated the growth of bovine bronchial epithelial cells in this system. Transforming growth factorβ1, however, inhibited growth and induced differentiation into a squamous phenotype. Also in contrast with other systems, the bovine cells were resistant to growth inhibition by 100 nM tetradecanoyl phorbol acetate or 1µM calcium ionophore A23187. Combination of phorbol ester with ionophore decreased mitotic activity, although induction of squamous morphology was not observed. Therefore, growth inhibition and squamous differentiation were not tightly coupled in this system. Finally, biologically synthesized matrix deposited by these cells stimulated growth rate. This culture system will therefore be useful in assessing the activities of both soluble and matrix-associated factors in the absence of serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrett, L. A.; McDowell, E. M.; Frank, A. L., et al. Long-Term organ culture of human bronchial epithelium. Cancer Res. 36:1003–1010; 1976.

    PubMed  CAS  Google Scholar 

  2. Bernal, S.; Weinberg, K.; Kakefuda, M., et al. Membrane antigens of human bronchial epithelial cells identified by monoclonal antibodies. In Vitro Cell. Dev. Biol. 24:117–125; 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Boyce, S. T.; Ham, R. G. Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum-free media. J. Tissue Cult. Methods 9:83–93; 1985.

    Article  Google Scholar 

  4. Buset, M.; Winawer, S.; Friedman, E. Defining conditions to promote the attachment of adult human colonic epithelial cells. In Vitro Cell. Dev. Biol. 23:403–412; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Eisinger, M.; Sadan, S.; Silver, I. A., et al. Growth regulation of skin cells by epidermal cell-derived factors: implications for wound healing. Proc. Natl. Acad. Sci. USA 85:1937–1941; 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Evans, M. J.; Shami, S. G.; Cabral-Anderson, L. J., et al. Role of nonciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. Am. J. Pathol. 123:126–133; 1986.

    PubMed  CAS  Google Scholar 

  7. Goldman, W. E.; Baseman, J. B. Selective isolation and culture of a proliferating epithelial cell population from the hamster trachea. In Vitro 16:313–319; 1980.

    PubMed  CAS  Google Scholar 

  8. Ham, R. G. Growth of normal human cells in defined media. In: Fischer, G.; Wieser, R. J., eds. Hormonally defined media: a tool in cell biology. New York: Springer-Verlag; 1983:16–30.

    Google Scholar 

  9. Hesterberg, T. W.; Maness, S. C.; Iglehart, J. D., et al. Subpopulations of human bronchial epithelial cells in culture respond heterogeneously to 12-O-tetradecanoylphorbol-13-acetate (TPA) and other modulators of differentiation. Carcinogenesis 8:1511–1515; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Inayama, Y.; Hook, G. E. R.; Brody, A. R., et al. The differentiation potential of tracheal basal cells. Lab. Invest. 58:706–717; 1988.

    PubMed  CAS  Google Scholar 

  11. Jeffrey, P. K. Morphologic features of airway surface epithelial cells and glands. Am. Rev. Respir. Dis. 128:S14-S20; 1983.

    Google Scholar 

  12. Jetten, A. M.; Rearick, J. I.; Smits, H. L. Regulation of differentiation of airway epithelial cells by retinoids. Biochem. Soc. Trans. 14:930–933; 1986.

    PubMed  CAS  Google Scholar 

  13. Lane, B. P.; Gordon, R. Regeneration of rat tracheal epithelium after mechanical injury. I. The relationship between mitotic activity and cellular differentiation. Proc. Soc. Exp. Biol. Med. 145:1139–1144; 1974.

    PubMed  CAS  Google Scholar 

  14. Lasnitzki, I. The effect of 3,4-benzopyrene on human fetal lung grown in vitro. Br. J. Cancer 10:510–516; 1956.

    PubMed  CAS  Google Scholar 

  15. Lechner, J. F.; LaVeck, M. A. A serum-free method for culturing normal human bronchial epithelial cells at clonal density. J. Tissue Cult. Methods 9:43–48; 1985.

    Article  Google Scholar 

  16. Lechner, J. F.; Tokiwa, T.; McClendon, I. A., et al. Effects of nickel sulfate on growth and differentiation of normal human bronchial epithelial cells. Carcinogenesis 5:1697–1703; 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Markwell, M. A.; Haas, S. M.; Bieber, L. L., et al. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analyt. Biochem. 87:206–210; 1978.

    Article  PubMed  CAS  Google Scholar 

  18. Masui, T.; Wakefield, L. M.; Lechner, J. F., et al. Type beta transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc. Natl. Acad. Sci. USA 83:2438–2442; 1986.

    Article  PubMed  CAS  Google Scholar 

  19. McDowell, E. M.; Ben, T.; Newkirk, C., et al. Differentiation of tracheal mucociliary epithelium in primary cell culture recapitulates normal fetal development and regeneration following injury in hamsters. Am. J. Pathol. 129:511–522; 1987.

    PubMed  CAS  Google Scholar 

  20. McDowell, E. M.; Kennan, K. P.; Huang, M. Effects of vitamin A-deprivation on hamster tracheal epithelium. Virch. Arch. B. 45:197–219; 1984.

    CAS  Google Scholar 

  21. Niles, R.; Kim, K. C.; Hyman, B., et al. Characterization of extended primary and secondary cultures of hamster tracheal epithelial cells. In Vitro Cell. Dev. Biol. 24:457–463; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Parkinson, E. K.; Grabham, P.; Emmerson, A. A subpopulation of cultured human keratinocytes which is resistant to the induction of terminal differentiation-related changes by phorbol, 12-myristate, 13-acetate: evidence for an increase in the resistant population following transformation. Carcinogenesis 4:857–861; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. Peehl, D. M.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16:526–538; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Schumann, B. L.; Cody, T. E.; Miller, M. L., et al. Isolation, characterization, and long-term culture of fetal bovine tracheal epithelial cells. In Vitro Cell Dev. Biol. 24:211–216; 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Stoner, G. D.; Katoh, Y.; Foidart, J.-M., et al. Identification and culture of human bronchial epithelial cells. Methods Cell Biol. 21A:15–35; 1980.

    Article  PubMed  CAS  Google Scholar 

  26. Takizawa, H.; Romberger, D.; Beckmann, J., et al. Separation of subpopulations of bovine bronchial epithelial cells by density centrifugation. Am. Rev. Respir. Dis. 139:404; 1989.

    Google Scholar 

  27. Takizawa, H.; Romberger, D.; Beckmann, J., et al. Separation of subpopulations of bovine bronchial epithelial cells by density centrifugation. Am. Rev. Respir. Cell Mol. Biol. 3:553–562; 1990.

    CAS  Google Scholar 

  28. Tsao, M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell. Physiol. 110:219–229; 1982.

    Article  PubMed  CAS  Google Scholar 

  29. Willey, J. C.; Saladino, A. J.; Ozanne, C., et al. Acute effect of 12-O-tetradecanoylphorbol-13-acetate, teleocidin B, or 2,3,7,8-tetrachlorodibenzo-p-dioxin on cultured normal human bronchial epithelial cells. Carcinogenesis. 5:209–215; 1984.

    Article  PubMed  CAS  Google Scholar 

  30. Wu, R.; Nolan, E.; Turner, C. Expression of tracheal differentiated functions in serum-free hormone-supplemented medium. J. Cell. Physiol. 125:167–181; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckmann, J.D., Takizawa, H., Romberger, D. et al. Serum-free culture of fractionated bovine bronchial epithelial cells. In Vitro Cell Dev Biol - Animal 28, 39–46 (1992). https://doi.org/10.1007/BF02631078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631078

Key words

Navigation