Skip to main content
Log in

Wavelets in biomedical engineering

  • Invited Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Wavelets analysis methods have been widely used in the signal processing of biomedical signals. These methods represent the temporal characteristics of a signal by its spectral components in the frequency domain. In this way, important features of the signal can be extracted in order to understand or model the physiological system. This paper reviews the widely used orthogonal wavelet transform method in the biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akay, M. Detection and Estimation of Biomedical Signals. San Diego: Academic Press, 1995.

    Google Scholar 

  2. Akay, M.Biomedical Signal Processing. San Diego: Academic Press, 1994.

    Google Scholar 

  3. Akay, M., G. Landesberg, W. Welkowitz, and D. Sapoznikov. Time-frequency analysis of heart rate fluctuations during carotid surgery using wavelet transform. In:Comparative Approaches in Medical Reasoning, edited by M. Cohen and D. Hudson. New York: World Scientific Publishing Co., 1995 (in press).

    Google Scholar 

  4. Akay, M., P. Chung, and H. H. Szeto. Time-frequency analysis of the electrocortical activity during maturation using wavelet transform.Biol. Cybernetics 71:169–176, 1994.

    CAS  Google Scholar 

  5. Battle, G. A block spin construction of ondelettes, part I: Lemarie functions.Comm. Math. Phys. 110:601–615, 1987.

    Article  Google Scholar 

  6. Bertrand, O., J. Bohorquez, and J. Pernier. Time-frequency digital filtering based on an invertible wavelet transform: An application to evoked potentials.IEEE Trans. Biom. Eng. 41:77–87, 1994.

    Article  CAS  Google Scholar 

  7. Chui, C. K.An Introduction to Wavelets. San Diego: Academic Press, 1992.

    Google Scholar 

  8. Coifman, R., and G. Weiss. Extensions of Hardy spaces and their use in analysis.Bull. Amer. Math. Soc. 83:569–645, 1977.

    Article  Google Scholar 

  9. Coifman, R., Y. Meyer, S. Quake, and V. Wickerhauser.Signal Processing and Compression with Wavelet Packets. Numerical Algorithms Research Group Report, Yale University, 1990.

  10. Coifman, R. and V. Wickerhauser. Entropy-based algorithms for best basis selection.IEEE Trans. Info. Theory 38:713–718, 1992.

    Article  Google Scholar 

  11. Daubechies, I. Time-frequency localization operators: A geometric phase space approach.IEEE Trans. Info. Theory 34:605–612, 1988.

    Article  Google Scholar 

  12. Daubechies, I. Orthonormal bases of compactly supported wavelets.Commun. Pure Applied Math. 41:909–996, 1988.

    Google Scholar 

  13. Daubechies, I.Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992.

  14. Grossman, A., and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of a constant shape.SIAM Jour. Math. Anal. 15:723–736, 1984.

    Article  Google Scholar 

  15. Haar, A. Zur Theorie der Orthogonalen Funktionen-systeme [in German]Math Analysis 69:331–371, 1910.

    Article  Google Scholar 

  16. Healy Jr., D. M., and J. B. Weaver. Two applications of Wavelet Transform in magnetic resonance imaging.IEEE Trans. Info. Theory. 38:840–860, 1992.

    Article  Google Scholar 

  17. Kadambe, S., and G. F. Bourdreaux-Bartels. Applications of the wavelet transform for pitch detection of speech signals.IEEE Trans. Info. Theory. 38:917–924, 1992.

    Article  Google Scholar 

  18. Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation.IEEE Trans. Patt. Anal. Mach. Intel. 11:674–693, 1989.

    Article  Google Scholar 

  19. Mallat, S., and S. Zhong. Characterization of signals from multiscale edges.IEEE Trans. Patt. Anal. Mach. Intel. 14:710–732, 1992.

    Article  Google Scholar 

  20. Mallat, S., and S. Zhong. Matching pursuits with time-frequency dictionaries.IEEE Trans. Signal Processing. 12:3397–3415, 1993.

    Article  Google Scholar 

  21. Martinet, R. K., J. Morlet, and A. Grossman. Analysis of sound patterns through wavelet transforms.Int. J. Patt. Recogn. Art. Intel. 1:273–302, 1987.

    Article  Google Scholar 

  22. Meste, O., H. Rix, R. Jau, and P. Cardinal. Detection of late potentials by means of Wavelet Transform.Proc. IEEE Eng. Med. Biol. Soc. 28–29, 1989.

  23. Meyer, Y.Wavelets, Algorithms and Applications. SIAM, 1993.

  24. Morlet, D., F. Peyrin, P. Desseigne, and P. Rubel. Wavelet analysis of high-resolution signal averaged ECGs in postinfarction patients.J. Electrocardiology 26:311–320, 1993.

    Article  CAS  Google Scholar 

  25. Rioul, O., and M. Vetterli. Wavelets and signal processing.IEEE Signal Proc. Magazine, 8:14–38, 1991.

    Article  Google Scholar 

  26. Rioul, O., P. Duhamel. Fast algorithms for discrete and continuous wavelet transforms.IEEE Trans. Info. Theory. 38:569–586, 1992.

    Article  Google Scholar 

  27. Schoenberg, I. J. Cardinal interpolation and spline functions.J. Approx. Theory. 2:167–206, 1969.

    Article  Google Scholar 

  28. Shensa, M. J. Affine wavelets: Wedding the a trous and Mallat lags.IEEE Trans. Signal Processing. 40:2464–2482, 1992.

    Article  Google Scholar 

  29. Tewfik, A. H., D. Sinha, and P. Jorgensen. On the optimal choice of a wavelet for signal representation.IEEE Trans. Info. Theory. 38:747–765, 1992.

    Article  Google Scholar 

  30. Thakor, N. V., X. Gou, Y-C. Sun, and D. F. Hanley. Multiresolution wavelet analysis of evoked potentials.IEEE Trans. BME. 40:1085–1094, 1993.

    Article  CAS  Google Scholar 

  31. Unser, M., A. Aldroubi, and M. Eden. On assimptotic convergence of B-spline wavelets to Gabor functions.IEEE Trans. Info. Theory. 38:864–872, 1992.

    Article  Google Scholar 

  32. Vetterli, M., and C. Harley. Wavelets and filter banks: Relationships and new results.Proceedings 1990 IEEE Int. Conf. Acoust., Speech, Signal Proc. 1723–1726, 1990.

  33. Vetterli, M., and C. Harley. Wavelets and filter banks: Theory and design.IEEE Trans. Signal Proc. 40:2207–2232, 1992.

    Article  Google Scholar 

  34. Yang, X., K. Wang, and S. A. Shamma. Auditory representation of acoustic signals.IEEE Trans. Info. Theory. 38:824–839, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akay, M. Wavelets in biomedical engineering. Ann Biomed Eng 23, 531–542 (1995). https://doi.org/10.1007/BF02584453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584453

Keywords

Navigation