Skip to main content

Advertisement

Log in

Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor

  • Original Article
  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Expression and regulation of vasopressin V2 and V1a receptors were studied at the mRNA level in the rat kidney. Two V2 mRNA variants were identified and shown to arise from a single gene by alternative splicing using one donor and two different acceptor sites. The long (V2L) form encodes the adenylyl cyclase-coupled receptor. The short (V2S) form lacks the nucleotide sequence encoding the putative seventh transmembrane domain and undergoes a frame shift in its 3'end coding region; it is inactive on the cyclase pathway in transfected cells. Measurement of mRNAs, carried out by quantitative reverse transcription-polymerase chain reaction (RT-PCR) on microdissected nephrons, demonstrated that neither V2L, V2S nor V1A mRNAs are expressed in glomeruli and proximal tubules (<100 mRNA copies/glomerulus or mm of tubular length), whereas they are present in the ascending limb of Henle's loop and in the collecting tubule. The V2L mRNA, which is always predominant in these structures, is expressed throughout the collecting tubule at 10 times higher levels (30,000 copies/mm) than in the thin and thick ascending limbs. The ratio of the V2S over V2L mRNA is constant (15%) in all nephron segments; hence high V2S levels are only observed in the collecting tubule. The V1A mRNA is slightly expressed in the thin ascending limb, absent in the thick ascending limb and reaches its maximum in the cortical collecting duct (4,000 copies/mm), before gradually decreasing to undetectable levels in the terminal collecting duct. Finally, in vivo administration of a vasopressin V2 agonist decreased by 50% V2L and V2S mRNAs, but did not alter the V1A mRNA level. We conclude that this study provides the quantitation, on a molar basis, of vasopressin receptor mRNAs in kidney tubules and demonstrates the occurence of two V2 mRNA spliced variants which are similarly down-regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammar A, Schmidt A, Semmekrot B, Roseau S, Butlen D (1991) Receptors for neurohypophyseal hormones along the rat nephron:125I-labelled d(CH2)5[Tyr(Me)2,Thr4,Orn8,TyrNH2 9] vasotocin binding in microdissected tubules. Pflügers Arch 418:220–227

    Article  PubMed  CAS  Google Scholar 

  2. Ammar A, Roseau S, Butlen D (1992) Pharmacological characterization of V1A vasopressin receptors in the rat cortical collecting duct. Am J Physiol 262:F546-F553

    PubMed  CAS  Google Scholar 

  3. Ando Y, Tabei K, Asano Y (1991) Luminal vasopressin modulates transport in the rabbit cortical collecting duct. J Clin Invest 88:952–959

    PubMed  CAS  Google Scholar 

  4. Antoni FA (1984) Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology 39:186–188

    PubMed  CAS  Google Scholar 

  5. Baertschi AJ, Friedli M (1985) A novel type of vasopressin receptor on anterior pituitary corticotrophs? Endocrinology 116:499–502

    PubMed  CAS  Google Scholar 

  6. Becker-André M, Hahlbrock K (1989) Absolute mRNA quantification using the polymerase chain reaction (PCR). Nucleic Acids Res 22:9437–9446

    Article  Google Scholar 

  7. Birnbaumer M, Seibold A, Gilbert S, Ishido M, Barberis C, Antaramian A, Brabet P, Rosenthal W (1992) Molecular cloning of the receptor for human antidiuretic hormone. Nature 357:333–335

    Article  PubMed  CAS  Google Scholar 

  8. Bloch W (1991) A biochemical perspective of the polymerase chain reaction. Biochemistry 30:2735–2747

    Article  PubMed  CAS  Google Scholar 

  9. Bouvier M, Collins S, O'Dowd BF, Campbell PT, De Blasi A, Kobilka BK, MacGregor C, Irons GP, Caron MG, Lefkowitz RJ (1989) Two distinct pathways for cAMP-mediated downregulation of theβ2-adrenergic receptor. Phosphorylation of the receptor and regulation of its mRNA level. J Biol Chem 264:16786–16792

    PubMed  CAS  Google Scholar 

  10. Brewer CB, Roth MG (1991) A single amino acid change in the cytoplasmic domain alters the polarized delivery of influenza virus hemagglutinin. J Cell Biol 114:413–421

    Article  PubMed  CAS  Google Scholar 

  11. Champigneulle A, Siga E, Vassent G, Imbert-Teboul M (1993) V2-like vasopressin receptor mobilizes intracellular Ca2+ in rat medullary collecting tubules. Am J Physiol 265:F35-F45

    PubMed  CAS  Google Scholar 

  12. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed  CAS  Google Scholar 

  13. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  14. Dublineau I, Elalouf JM, Pradelles P, de Rouffignac C (1989) Independent desensitization of rat renal thick ascending limbs and collecting ducts to ADH. Am J Physiol 256:F656-F663

    PubMed  CAS  Google Scholar 

  15. Elalouf JM, Di Stefano A, de Rouffignac C (1986) Sensitivities of rat kidney thick ascending limbs and collecting ducts to vasopressin in vivo. Proc Natl Acad Sci USA 83:2276–2280

    Article  PubMed  CAS  Google Scholar 

  16. Elalouf J, Chabane-Sari D, Roinel N, de Rouffignac C (1988) Desensitization of rat renal thick ascending limb cells to vasopressin. Proc Natl Acad Sci USA 85:2407–2411

    Article  PubMed  CAS  Google Scholar 

  17. Elalouf JM, Buhler JM, Tessiot C, Bellanger AC, Dublineau I, de Rouffignac C (1993) Predominant expression ofβ1-adrenergic receptor in the thick ascending limb of rat kidney. Absolute mRNA quantitation by reverse transcription and polymerase chain reaction. J Clin Invest 91:264–272

    PubMed  CAS  Google Scholar 

  18. Gorbulev V, Büchner H, Akhundova A, Fahrenholz F (1993) Molecular cloning and functional chracterization of V2[8-lysine]vasopressin and oxytocin receptors from a pig kidney cell line. Eur J Biochem 215:1–7

    Article  PubMed  CAS  Google Scholar 

  19. Hadcock JR, Malbon CR (1988) Down-regulation ofβ-adrenergic receptors: agonist-induced reduction in receptor mRNA levels. Proc Natl Acad Sci USA 85:5021–5025

    Article  PubMed  CAS  Google Scholar 

  20. Imai M, Kusano E (1982) Effects of arginine vasopressin on the thin ascending limb of Henle's loop of hamsters. Am J Physiol 243:F167-F172

    PubMed  CAS  Google Scholar 

  21. Imbert-Teboul M, Chabardès D, Montegut M, Morel F (1978) Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology 102:1254–1261

    PubMed  CAS  Google Scholar 

  22. Imbert-Teboul M, Champigneulle A, Siga E (1993) Segmental distribution of V1a- and V2-receptor mediated effects along the nephron. In: Vasopressin. Richter D, Gross P, Robertson GL (eds) Libbey Eurotext, Paris, pp 275–287

    Google Scholar 

  23. Jard S, Gaillard RC, Guillon G, Marie J, Schoenenberg P, Muller AF, Manning M, Sawyer WH (1986) Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. Mol Pharmacol 30:171–177

    PubMed  CAS  Google Scholar 

  24. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  25. Lolait SJ, O'Carroll A-M, McBride OW, Koning M, Morel A, Brownstein MJ (1992) Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature 357:336–339

    Article  PubMed  CAS  Google Scholar 

  26. Maeda Y, SukHan J, Gibson CB, Knepper MA (1993) Vasopressin and oxytocin receptors coupled to Ca2+ mobilization in rat inner medullary collecting duct. Am J Physiol 265:F15-F25

    PubMed  CAS  Google Scholar 

  27. Michell RH, Kirk CJ, Billah MM (1979) Hormonal stimulation of phosphatidylinositol breakdown, with particular reference to the hepatic effects of vasopressin. Biochem Soc Trans 7:861–865

    PubMed  CAS  Google Scholar 

  28. Mizuno T, Iwashina M, Itakura M, Hagiwara H, Hirose S (1993) A variant form of the type C atrial natriuretic peptide receptor generated by alternative RNA splicing. J Biol Chem 268:5162–5167

    PubMed  CAS  Google Scholar 

  29. Morel A, O'Caroll A-M, Brownstein MJ, Lolait SJ (1992) Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature 356:523–526

    Article  PubMed  CAS  Google Scholar 

  30. Morel F, Imbert-Teboul M, Chabardès D (1987) Receptors to vasopressin and other hormones in the mammalian kidney. Kidney Int 31:512–520

    PubMed  CAS  Google Scholar 

  31. Nitschke R, Fröbe U, Greger R (1991) Antidiuretic hormone acts via V1 receptors on intracellular calcium in the isolated perfused rabbit cortical thick ascending limb. Pflügers Arch 417:622–632

    Article  PubMed  CAS  Google Scholar 

  32. Ohshima Y, Gotoh Y (1987) Signals for the selection of a splice site in pre-mRNA. Computer analysis of splice junction sequences and like sequences. J Mol Biol 195:247–259

    Article  PubMed  CAS  Google Scholar 

  33. Ostrowski NL, Young WS III, Knepper MA, Lolait SJ (1993) Expression of vasopressin V1A and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology 133:1849–1859

    Article  PubMed  CAS  Google Scholar 

  34. Pan Y, Metzenberg A, Das S, Jing B, Gitschier J (1992) Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nature Gen 2:103–106

    Article  CAS  Google Scholar 

  35. Rajerison R, Butlen D, Jard S (1977) Effect of in vivo treatment with vasopressin and analogues on renal adenylate cyclase responsiveness to vasopressin stimulation in vitro. Endocrinology 101:1–12

    Article  PubMed  CAS  Google Scholar 

  36. de Rouffignac C, Corman B, Roinel N (1983) Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney. Am J Physiol 244:F156-F164

    PubMed  Google Scholar 

  37. Teitelbaum I (1991) Vasopressin-stimulated phosphoinositide hydrolysis in cultured rat inner medullary collecting duct cells is mediated by the oxytocin receptor. J Clin Invest 87:2122–2126

    PubMed  CAS  Google Scholar 

  38. Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F (1993) Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest 92:2339–2345

    Article  PubMed  CAS  Google Scholar 

  39. Vandewalle A (1984) Heterogeneity of uridine incorporation along the rabbit nephron. II. Effect of DOCA. Am J Physiol 246:F427-F436

    PubMed  CAS  Google Scholar 

  40. Wall SM, SukHan J, Chou CL, Knepper MA (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262:F989-F998

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firsov, D., Mandon, B., Morel, A. et al. Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch. 429, 79–89 (1994). https://doi.org/10.1007/BF02584033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584033

Key words

Navigation