Skip to main content
Log in

Mechanical stimulation by intermittent compression stimulates sulfate incorporation and matrix mineralization in fetal mouse long-bone rudiments under serum-free conditions

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Mechanical stimulation evoked by intermittent hydrostatic compression (IC) in a closed culture system has been shown to stimulate calcification of fetal long-bone rudiments in the presence of serum [6]. We have studied effects of IC on sulfate metabolism and matrix mineralization under serum-free conditions, in short-term (24 hours) cultures of mineralizing long-bone rudiments in alpha minimum essential medium (MEM)+0.2% bovine serum albumen (BSA). Exposure to IC for 24 hours stimulated radiosulfate incorporation into the papain-digestible pool in the noncalcifying epiphyses and, to a larger extent, in the calcifying diaphysis. The percentage release of35S from prelabeled rudiments was stimulated in the epiphyses, but inhibited in the diaphyses. The changes in sulfate metabolism of matrix mineralization, in hypertrophic cartilage, and the diaphyseal bone collar, were judged from the increase in length of the diaphysis. This study shows that under serum-free conditions, mechanical stimulation by IC increases sulfate content while stimulating mineralization in calcifying cartilage of fetal long-bone rudiments. Mechanical stimulation seems to be an important regulator of cartilage calcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glucksman A (1942) The role of mechanical stress in bone formation in vitro. J Anat 76:231–239

    Google Scholar 

  2. Rodan GA, Mensi T, Harvey A (1975) A quantitative method for application of compressive forces to bone in tissue culture. Calcif Tissue Res 18:125–131

    Article  PubMed  CAS  Google Scholar 

  3. Rodan GA, Bourret LA, Harvey A, Mensi T (1975) Cyclic AMP and cyclic GMP: mediators of mechanical effects on bone remodeling. Science 189:467–468

    Article  PubMed  CAS  Google Scholar 

  4. Veldhuijzen JP, Bourret LA, Rodan GA (1979) In vitro studies of the effect of intermittent compressive forces on cartilage cell proliferation. J Cell Physiol 98:299–306

    Article  PubMed  CAS  Google Scholar 

  5. van Kampen GPJ, Veldhuijzen JP, Kuijer R, van de Stadt RJ, Schipper CA (1985) Cartilage response to mechanical force in high-density chondrocyte cultures. Arthritis Rheum 28:419–424

    PubMed  Google Scholar 

  6. Klein-Nulend J, Veldhuijzen JP, Burger EH (1986) Increased calcification of growth plate cartilage as a result of compressive force in vitro. Arthritis Rheum 29:1002–1009

    PubMed  CAS  Google Scholar 

  7. Klein-Nulend J, Veldhuijzen JP, van de Stadt RJ, van Kampen GPJ, Kuijer R, Burger EH (1987) Influence of intermittent compressive force on proteoglycan content of calcifying growth plate cartilage in vitro. J Biol Chem 262: 15490–15495

    PubMed  CAS  Google Scholar 

  8. Scott JE (1960) Aliphatic ammonium salts in the assay of acidic polysaccarides from tissue. Meth Biochem Anal 8:145–197

    Article  CAS  Google Scholar 

  9. van Kampen GPJ, Veldhuijzen JP (1982) Aggregated chondrocytes as a model to study cartilage metabolism. Exp Cell Res 140:440–443

    Article  PubMed  Google Scholar 

  10. Burger EH, Van der Meer JWM, van de Gevel J, Gribnau JC, Thesingh CW, Van Furth R (1982) In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med 156:1604–1614

    Article  PubMed  CAS  Google Scholar 

  11. Urist MR (1980) Fundamental and clinical bone physiology. JB Lippincott, Philadelphia

    Google Scholar 

  12. Poole AR, Pidoux I, Reiner Choi H, Rosenberg LC (1984) Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol 98:54–65

    Article  PubMed  CAS  Google Scholar 

  13. Piez KA, Reddi AH (1984) Extracellular matrix biochemistry Elsevier, New York, pp 375–412

    Google Scholar 

  14. Lash JW, Vasan NS (1983) Structure, function and biochemistry. In: Hall BK (ed) Cartilage, vol 1. Academic Press, New York, p 215

    Google Scholar 

  15. Reddi AH (ed) (1985) Extracellular matrix mineralization. UCLA symposia on molecular and cellular biology, new series, vol 25, AR Liss, New York, pp 37–41

    Google Scholar 

  16. Ali SY (1983) Calcification of cartilage. In: Hall BK (ed) Cartilage, vol 1, Academic Press, New York pp 343–378

    Google Scholar 

  17. Caplan AI (1984) Cartilage. Sci Am 4:84–92

    Google Scholar 

  18. Chen CC, Boskey AL (1986) The effects of proteoglycans from different cartilage types on in vitro hydroxyapatite proliferation. Calcif Tissue Int 39:324–327

    PubMed  CAS  Google Scholar 

  19. Buckwalter JA (1983) Proteoglycan structure in calcifying cartilage. Clin Orthop 172:207–232

    PubMed  CAS  Google Scholar 

  20. Kuettner KE, Kimura JH (1985) Proteoglycans: an overview. J Cell Biochem 27:327–336

    Article  PubMed  CAS  Google Scholar 

  21. Tenebaum HC, Hunter GK (1987) Chondroitin sulphate inhibits calcification of bone formed in vitro. Bone Mineral 2:43–51

    Google Scholar 

  22. Dziewiatkowski DD (1987) Binding of calcium by proteoglycans in vitro. Calcif Tissue Int 40:265–269

    Article  PubMed  CAS  Google Scholar 

  23. Prince CW, Rahemtolla F, Butler WT (1983) Metabolism of rat bone proteoglycans in vivo. Biochem J 216:596–598

    Google Scholar 

  24. Dziewiatkowski DD, Majznerski LL (1985) Role of proteoglycans in endochondral ossification: inhibition of calcification. Calcif Tissue Int 37:560–564

    PubMed  CAS  Google Scholar 

  25. Blumenthal NC, Posner AS, Silverman LD, Rosenberg LO (1979) Effect of proteoglycans on in vitro hydroxyapatite formation. Calcif Tissue Int 27:75–82

    Article  PubMed  CAS  Google Scholar 

  26. Carter DR (1984) Mechanical loading histories and cortical bone remodeling. Calcif Tissue Int (suppl) 36:S19-S24

    Article  PubMed  Google Scholar 

  27. Currey JD (1981) What is bone for? Property-function relationship in bone. In: Mechanical properties of bone. ASME Publication AMD, vol 45, New York, pp 13–26

  28. Steinberg ME, Trueta J (1981) Effects of activity of bone growth and development in the rat. Clin Orthop Rel Res 156:52–60

    Google Scholar 

  29. Studitski A (1934) The mechanism of the formation of regulating structures in the embryonic skeleton. CR Acad URSS NS 4:637–640

    Google Scholar 

  30. Inerot S, Heinegard D (1983) Bovine tracheal cartilage proteoglycans. Variations in structure and composition with age. Collagen Rel Res 3:245–262

    CAS  Google Scholar 

  31. Shepard N, Mitchell N (1985) Ultrastructural modifications of proteoglycans coincident with mineralization in local regions of rat growth plate. J Bone Joint Surg 67-A:455–464

    Google Scholar 

  32. Scherft JP, Moskalewski S (1984) The amount of proteoglycans in cartilage matrix and the onset of mineralization. Metab Bone Dis Rel Res 5:195–203

    Article  CAS  Google Scholar 

  33. Hunter GK (1987) Myths of cartilage calcification. Calcif Tissue Int (suppl) 2:P69

    Google Scholar 

  34. Fisher WL, Termine JD, Dejter SW Jr, Whitson SW, Yanagishita M, Kimura JH, Hascall VC, Kleinman HK, Hassell JR, Nilsson B (1983) Proteoglycans of developing bone. J Biol Chem 258: 6588–6594

    PubMed  CAS  Google Scholar 

  35. Fisher WL, Hawkins GR, Tuross N, Termine JD (1987) Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment at developing human bone. J Biol Chem 262:9702–9708

    PubMed  CAS  Google Scholar 

  36. Raisz LG (1988) Local and systemic factors in the pathogenesis of osteoporosis. N Engl J Med 318:818–830

    Article  PubMed  CAS  Google Scholar 

  37. Glaser JH, Conrad HE (1984) Properties of chick embryo and chondrocytes grown in serum-free medium. J Biol Chem 259:6757–6765

    Google Scholar 

  38. Canalis E (1988) Growth factors and the regulation of bone remodeling. J Clin Invest 81:277–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagi, Č., Burger, E.H. Mechanical stimulation by intermittent compression stimulates sulfate incorporation and matrix mineralization in fetal mouse long-bone rudiments under serum-free conditions. Calcif Tissue Int 45, 342–347 (1989). https://doi.org/10.1007/BF02556004

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556004

Key words

Navigation