Skip to main content
Log in

Glutathione, oxidative stress and aging

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The free radical theory of aging proposes that the impairment in physiological performance associated with aging is caused by the detrimental effects of oxygen free radicals. This is interesting because it provides us with a theoretical framework to understand aging and because it suggests a rationale for intervention, i.e., antioxidant administration. Thus, the study of antioxidant systems of the cell may be very important in gerontological studies. Glutathione is one of the main nonprotein antioxidants in the cell which, together with its related enzymes, constitute the “glutathione system.” The involvement of glutathione in aging has been known since the early seventies. Several studies have reported that reduced glutathione is decreased in cells from old animals, whereas oxidized glutathione tends to be increased. Recent experiments from our laboratory have underscored the importance of cellular compartmentation of glutathione. Mitochondrial glutathione plays a key role in the protection against free radical damage associated with aging. Oxidative damage to mitochondrial DNA is directly related to an oxidation of mitochondrial glutathione. In fact, aging is associated with oxidative damage to proteins, nucleic acids, and lipids. These molecular lesions may be responsible for the low physiological performance of aged cells. Thus, antioxidant supplementation may be a rational way to partially protect against age-associated impairment in performance. Apoptosis, a programmed cell death, is an area of research which has seen an explosive growth. Glutathione is involved in apoptosis: apoptotic cells have lower levels of reduced glutathione, and administration of glutathione precursors prevent, or at least delay, apoptosis. Age-associated diseases constitute a major concern for researchers involved in aging. Free radicals are involved in many such diseases; for instance, cancer, diabetes or atherosclerosis. The key role of glutathione and other antioxidants in the pathophysiology of aging and age-associated diseases is discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, R.G., Sohal, R.S.: Role ofglutathione in the aging and development of insects. In Insect aging. Collatz, K.G. and Sohal, R.S., Eds. Springer Verlag. Berlin Heidelberg. 1986 pp.168–181.

    Google Scholar 

  • Al-Turk, W., Stohs, S.J., El-Rashidy F.H., Othman, S.: Changes in glutathione and its metabolizing enzymes in human erythrocytes and lymphocytes with age J. Pharm. Pharmacol, 39: 13–16, 1987.

    PubMed  CAS  Google Scholar 

  • Ames, B.N., Shigenaga, M., Hagen, T.M.: Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA, 90: 7915–7922, 1993.

    PubMed  CAS  Google Scholar 

  • Barja, G., Pérez-Campo, R., López-Torres, L., Cadenas, S., Rojas, C.: Low mitochondrial free radical production as a longevity determinant in species following or not the rate of living theory. Mech. Aging Dev., 1996 (in press).

  • Beal, M.F., Hyman, B.T., Koroshetz, W.: Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? TINS, 16: 125–131, 1993.

    PubMed  CAS  Google Scholar 

  • Benzi, G., Marzatico, F., Pastoris, O., Villa, R.F.: Relationship between aging, drug treatment and the cerebral enzymatic antioxidant system. Exp. Gerontol., 24: 137–148, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Buja, L.M., Eigenbrodt, M.L., Eigenbrodt, E.H.: Apoptosis and Necrosis. Basic Types and Mechanisms of Cell Death. Arch. Pathol. Lab. Med. 117, 1208–1214, 1993.

    PubMed  CAS  Google Scholar 

  • Buttke, T.M., Sandstrom, P.A.: Oxidative stress as a mediator of apoptosis. Immunol. Today, 15: 7–10, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Cand, F. and Verdetti, J.: Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rats. Free Radical Biol. Med., 7:59–63, 1989.

    Article  CAS  Google Scholar 

  • Calleja, M., Peña, P., Ugalde, C., Ferreiro, C., Marco, R., Garesse, R.: Mitochondrial DNA remains intact during Drosophila aging, but the levels of mitochondrial transcripts are significantly reduced. J. Biol. Chem., 268:18891–18897, 1993.

    Google Scholar 

  • Cannon, J.G., Orencole, S.F., Fielding, R.A., Meydani, M., Meydani, S.N., Fiatarone, M.A., Blumberg, J.B., Evans, W.J.: Acute phase response in exercise-interaction of age and vitamin-E on neutrophils and muscle enzyme release. Am. J. Physiol., 259:1990.

  • Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Landum, R.W., Cheng, M.S., Wu, J.F. and Floyd, R.A.: Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone. Proc. Natl. Acad. Sci. USA, 88:3633–3636, 1991.

    PubMed  CAS  Google Scholar 

  • Chance, B., Sies, H., Boveris, A.: Hydroperoxide metabolism in mammalian organs. Physiological Rev., 59: 527–604, 1979.

    CAS  Google Scholar 

  • Corbisier, P., Remacle, J.: Involvement of mitochondria in cell degeneration. Eur. J. Cell Biol., 51: 173–182, 1990.

    PubMed  CAS  Google Scholar 

  • Coyle, J., Puttfaarcken, P.: Oxidative stress, glutamate and neurodegenerative disorders. Science, 262: 689–694, 1993.

    PubMed  CAS  Google Scholar 

  • Cutler, R.G.: Antioxidants and aging. Am. J. Clin. Nutr., 53: S373–S379, 1991.

    Google Scholar 

  • De la Cruz, J., Burón, I., Roncero, I.: Morphological and functional studies during aging at mitochondrial level. Action of drugs. Int. J. Biochem., 22:729–735, 1990.

    Article  PubMed  Google Scholar 

  • Deckwerth, T.L., Johnson, E.M.: Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J. Cell Biol., 123: 1207–1222, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Devasagayam, T.P.: Senescence-associated decrease of NADPH-induced lipid peroxidation in rat liver microsomes. FEBS Lett. 205, 246–50, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Devasagayam, T.P. and Tarachand, U.: Decreased lipid peroxidation in the rat kidney during gestation. Biochem. Biophys. Res. Commun. 145, 134–8, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Estrela, J.M., Obrador, E., Navarro, J., Lasso-de-la-Vega, M.C., Pellicer, J.: Elimination of Ehrlich tumors by ATP-induced growth inhibition, glutathione depletion and X-rays. Nature Med. 1, 84–88, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, J.V., Gascó, E., Sastre, J., Pallardó, F.V., Asensi, M., Vifia, J.: Age-related changes in glutathione synthesis in the eye lens. Biochem. J., 269: 531–534, 1990.

    PubMed  CAS  Google Scholar 

  • Fucci, L., Oliver, C.N., Coon, M.J. and Stadtman, E.R.: Inactivation of key metabolic enzymes by mixed-function oxidation reactions: Possible implication in protein turnover and aging. Proc. Natl. Acad. Sci. USA, 80: 1521–1525, 1983.

    PubMed  CAS  Google Scholar 

  • Furukawa, T., Meydani, S.N., Blumberg, J.B.: Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice. Mech. Aging Dev., 38: 107–117, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta, M.N., Petruzzella, V., Renis, M., Fracasso, F., Cantatore, P.: Reduced transcription of mitochondrial DNA in the senescent rat. Tissue dependence and effect of L-carnitine. Eur. J. Biochem. 187: 501–506, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Garcia de la Asuncion, J., Millán, A., Pill, R., Bruseghini, L., Esteras, A., Pallardó, F.V., Sastre, J., Viña, J.: Mitochondrial glutathione oxidation correlates with age-associated oxidative damage to mitochondrial DNA. FASEB J., 10: 333–338, 1996.

    Google Scholar 

  • Garland, D., Russell, P., Zigler, J.S. Jr.: The oxidative modification of lens proteins. Basic Life Sci. 49, 347–52. 1988.

    PubMed  CAS  Google Scholar 

  • Goldschmidt, L.: Seasonal variations in red cell glutathione levels with aging in mental patients and normal controls. Proc. Soc. Exp. Biol. Med., 133: 555–559, 1970.

    PubMed  CAS  Google Scholar 

  • Gordillo, E., Ayala, A., Lobato, M., Bautista, J., Machado, A.: Possible involvement of histidine residues in the loss of enzymatic activity of rat liver malic enzyme during aging. J. Biol. Chem., 263, 8053–8056, 1988.

    PubMed  CAS  Google Scholar 

  • Gotz, M.E., Freyberger, A., Riederer, P.: Oxidative Stress — A Role in the Pathogenesis of Parkinsons Disease. J. Neur. Transmission, 29: 241–249, 1990.

    CAS  Google Scholar 

  • Gutteridge, J.M.C.: Copper-phenanthroline induced site specific oxygen radical damage to DNA. Detection of loosely bound trace copper in biological fluids. Biochem. J., 218: 983–985, 1984.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J.M.C., Westermarck, T., and Halliwell, B.: Oxygen radical damage in biological systems. In: Free Radicals, Aging and Degenerative Diseases, pp: 99–139. eds J.E. Johson Jr., R. Walford, D. Harman, J. Miquel. Alan R. Liss, 1986.

  • Halliwell, B., Gutteridge, J.M.C.: Free Radicals in Biology and Medicine. Claredon, Oxford. 1989.

    Google Scholar 

  • Hansford, R.G.: Lipid oxidation by heart mitochondria from young adult and senescent rats. Biochem J;170: 285–295, 1978.

    PubMed  CAS  Google Scholar 

  • Harman, D.: Aging: a theory based on free radical and radiation chemistry J. Gerontol, 11: 298–300, 1956.

    PubMed  CAS  Google Scholar 

  • Harman, D.: The aging process-Major risk factor for disease and death. Proc. Nat. Acad. Sci. USA, 88: 5360–5363, 1991.

    PubMed  CAS  Google Scholar 

  • Hazelton, G.A., Lang, C.A.: Glutathione contents of tissues in the aging mouse. Biochem. J;188: 25–30, 1980.

    PubMed  CAS  Google Scholar 

  • Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L., Korsmeyer, S.J.: Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hattori, K., Kondo, T., Mizuno, Y., Ozawa, T.: Increase of deleted mitochondrial DNA in the striatum in Parkinsons Disease and senescence. Biochem. Biophys. Res. Commun; 170: 1044–1048, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Jankovic, B.D.: Neuromodulation. From phenomenology to molecular evidence. Ann. N.Y. Acad. Sci. 741, 1–38, 1994.

    PubMed  CAS  Google Scholar 

  • Johns, D.R.: Mitochondrial DNA and disease. New Engl. J. Med; 333:638–644, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kalra, J., Rajput, A.H., Mantha, S.V., Chaudhary, A.K., Prasad, K.: Oxygen free radical producing activity of polymorphonuclear leukocytes in patients with Parkinson’s disease. Moll. Cell. Biochem. 112, 181–6, 1992.

    Article  CAS  Google Scholar 

  • Knekt, P., Heliovaara, M., Rissanen, A., Aromaa, A., Aaran, R.-K.: Serum antioxidant vitamins and risk of cataract. Br. Med. J. 305: 1392–1394, 1992.

    Article  CAS  Google Scholar 

  • Kroemer, G., Petit, P., Zamzami, N., Vaysiere, J.L. and Mignotte, B.: The biochemistry of programmed cell death. FASEB J; 9:1277–1287, 1995.

    PubMed  CAS  Google Scholar 

  • Ku, H., Brunk, U.T., Sohal, R.S.: Relationship between mitochondrial superoxide and hydroperoxide production and longevity of mammalian species. Free Radical Biol. Med; 15: 621–627, 1993.

    Article  CAS  Google Scholar 

  • Leske, M.C., Chylack, L.T. Jr., Wu, S.Y.: The lens opacities case-control study. Risk factors for cataract. Arch. Ophthalmol. 109: 244–251, 1991.

    PubMed  CAS  Google Scholar 

  • Levine, R.L.: Oxidative modification of glutamine synthetase II. Characterization of the ascorbate model system. J. Biol. Chem; 258:11828–11833, 1983.

    Google Scholar 

  • Linnane, A., Marzuki, S., Ozawa, T., Tanaka, M.: Mitochondrial DNA mutations as an important contributor to aging and degenerative diseases. Lancet, 642–645, 1989.

  • Lippman, R.D.: Rapid “in vivo” quantification and comparison of hydroperoxides and oxidized collagen in aging mice, rabbits and man. Exp. Gerontol, 20: 1–5, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, R.D.: Free radical-induced lipoperoxidation and aging. In: Handbook of Free Radicals and Antioxidants in Biomedicine Vol. I eds J. Miquel, A.T. Quintanilha, and H. Weber, CRC press, Boca Ratón Cal. USA. 1989.

    Google Scholar 

  • López-Torres, M., Pérez-Campo, R., Rojas, C., Cadenas, S., Barja, G.: Maximum life span in vertebrates: correlation with liver antioxidant enzymes, glutathione system, ascorbate, urate sensitivity to peroxidation, true malondialdehyde, in vivo H2O2 and basal and, maximum aerobic capacity. Mech. Aging and Dev., 70: 177–99, 1993.

    Article  Google Scholar 

  • Martensson, J., Steinherz, R., Jain, A., Meister, A.: Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc. Natl. Acad. Sci. USA, 86:8727–8731, 1989.

    PubMed  CAS  Google Scholar 

  • Medvedev, Z.: An Attempt at a Rational Classification of Theories of Aging. Biological Reviews of the Cambridge Philosophical Society, 65: 375–398, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Meydani, M., Evans, W.J., Handelman, G., Biddle, L., Fielding, R.A., Meydani, S.N., Burrill, J., Fiatarone, M.A., Blumberg, J.B., Cannon, J.G.: Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults. Am. J. Physiol., 33: R992–R998, 1993.

    Google Scholar 

  • Miquel, J., Economos, A.C., Fleming, J., Johnson, J.E. Jr.: Mitochondrial role in cell aging. Exp. Gerontol., 15: 579–91, 1980.

    Article  Google Scholar 

  • Miquel, J., Lundgren, P.R., Johnson, J.E.: Spectrophotofluorimetric and electron microscopic study of lipofuscin accumulation in the testis of aging mice, J Gerontol., 33: 5–19, 1978.

    CAS  Google Scholar 

  • Miquel, J., Fleming, J.E.: Theoretical and experimental support for an “oxygen radical-mitochondrial injury” hypothesis of cell aging. In: Free Radicals, Aging and Degenerative Diseases. Johnson, J.E. Jr., Walford, R., Harman, D., Miquel, J. eds. FF. New York: Alan R. Liss 1986, pp: 51–74.

    Google Scholar 

  • Mizuno, Y., Ohta, K.: Regional distribution of thiobarbituric acid-reactive products, activities of enzymes regulating the metabolism of free radicals and some of the related enzymes. J. Neurochem, 46: 1344–1352, 1986.

    PubMed  CAS  Google Scholar 

  • Monti, D., Troiano, L., Tropea, F., Grassilli, E., Cossarizza, A., Barozzi, D., Pelloni, M.C., Tamassia, M.G., Bellomo, G., Franceschi, C.: Apoptosis — programmed cell death: a role in the aging process? Am. J. Clin. Nutr. 55: 1208S–14S, 1992.

    Google Scholar 

  • Muskhelishvili, L., Hart, R.W., Turturro, A., James, S.J.: Age-related changes in the intrinsic rate of apoptosis in livers of diet-restricted and ad tibitum-fed B6C3F1 mice. Am. J. Pathol., 147: 20–24, 1995.

    PubMed  CAS  Google Scholar 

  • Nohl and Hegner, Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82, 563–7, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Oliver, C.N., Ahn, B.W., Moerman, E.J., Goldstein, S., Stadtman, E.R.: Age-related changes in oxidized proteins. J. Biol. Chem. 262, 5488–5491, 1987.

    PubMed  CAS  Google Scholar 

  • Omenn, G.S., Goodman, G.E., Thornquist, M.D., Balmes, J., Cullen, M.R., Glass, A.: Effect of a combination of b carotene and vitamin A on lung cancer and cardiovascular disease. N. Engl. J. Med. 334, 1150–5, 1996

    Article  PubMed  CAS  Google Scholar 

  • Orr, W.C., Sohal, R.S.: The effects of catalase gene overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Arch. Biochem. Biophys. 297: 35–41, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Orr, W.C., Sohal, R.S.: Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263: 1128–30, 1994.

    PubMed  CAS  Google Scholar 

  • Pallardó, F.V., Mompó, J., Esteve, J.M., Sastre, J., Asensi, M.A., Viña, J.: Glutathione oxidation increases in apoptotic fibroblasts. Role of apoptosis in aging. VIII Biennial Meeting. International Society for Free Radical Research Barcelona 1–5 October 1996.

  • Paradies, G., Ruggiero, F.M.: Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch. Biochem. Biophys., 284: 332–337, 1978.

    Article  Google Scholar 

  • Pinto, R.E., Bartley, WA.: Negative correlation between oxygen uptake and glutathione oxidation in rat liver homogenates. Biochem. J. 114, 5–9, 1969

    PubMed  CAS  Google Scholar 

  • Pryor, W.: Oxy-radicals and related species: their formation, lifetimes and reactions. Ann. Rev. Physiol. 48: 657–667, 1986.

    Article  CAS  Google Scholar 

  • Ratan, RR., Murphy, T.H, Baraban, J.M.: Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem., 62: 376–379, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Richter, C., Park, J.W., Ames, B.: Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci. USA, 85: 6465–6467, 1988.

    PubMed  CAS  Google Scholar 

  • Ritchie, J.P., Leutzinger, Y., Partharsarathy, S., Malloy, V., Orentreich, N., Zimmerman, J.A.: Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J., 8: 1302–1307, 1994.

    Google Scholar 

  • Rikans, L.E., Moore, D.R.: Effect of aging on aqueous-sphase antioxidants in tissues of male Fischer rats. Biochem. Biophys. Acta, 966: 269–275, 1988.

    PubMed  CAS  Google Scholar 

  • Saez, G., Thornalley, P.J., Hill, H.A.O., Hems, R., Bannister, JV.: The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim. Biophys. Acta, 719, 24–31, 1982

    PubMed  CAS  Google Scholar 

  • Santa Maria, C., Machado, A.: Effects of development and aging on pulmonary NADP-cytochrome c reductase, glutathione peroxidase, glutathione reductase and thioredoxin reductase activities in male and female rats. Mech. Aging Dev., 37: 183–195, 1987.

    Article  CAS  Google Scholar 

  • Sastre, J., Pallardó, F.V., Pá, R., Pellin, A., Juan, G., O’Connor, E., Estrela, J.M., Miquel, J., Viña, J.: Aging of the liver: Age-associated mitochondrial damage in intact hepatocytes. Hepatology 1996 (In press).

  • Scalettar, B.A., Abney, J.R., Hackenbrock, C.R.: Dynamics, structure and function are coupled in the mitochondrial matrix. Proc. Natl. Acad. Sci. USA., 88: 8057–8061, 1991.

    PubMed  CAS  Google Scholar 

  • Schwartzman, R.A. and Cidlowski, J.A.: Apoptosis: The biochemistry and Molecular Biology of Programmed Cell Death. Endocrine Rev. 14, 133–151, 1993.

    Article  CAS  Google Scholar 

  • Sawada, C.M., Carlson, J.C.: Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech. Aging Dev. 41:125–137, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Seto, N.O.L., Hayashi, S., Tener, G.M.: Overexpression of Cu-Zn superoxide dismutase in Drosophila does affect life-span. Proc. Natl. Acad. Sci. USA, 87: 4270–74, 1990.

    PubMed  CAS  Google Scholar 

  • Sevanian, A., Hochstein, P.: Mechanisms and consequences of lipid peroxidation in biological systems. Ann. Rev. Nutr, 5: 365–390, 1985.

    Article  CAS  Google Scholar 

  • Shigenaga, M.K., Hagen, T.M., Ames, B.N.: Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA, 91: 10771–8, 1994.

    Google Scholar 

  • Sies, H., Bartoli, G.M., Burk, R.F., Waydhas, C.: Glutathione efflux from perfused rat liver after phenobarbital treatment, during drug oxidations, and in selenium deficiency. Eur. J. Biochem., 89: 113–118, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H.: Biochemistry of oxidative stress. Angewandte Chemie, 25: 1058–1071, 1986.

    Article  Google Scholar 

  • Sohal, R.S.: Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mech. Age Dev., 60: 189–198, 1991.

    Article  CAS  Google Scholar 

  • Sohal, R.S., Arnold, L.A., Sohal, B,H.: Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Rad. Biol. Med., 9: 495–500, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Sohal, R.S., Dubey, A.: Mitochondrial oxidative damage, hydrogen peroxide release, and aging. Free Radical. Biol. Med., 16: 621–626, 1994.

    Article  CAS  Google Scholar 

  • Stadtman, E.R.: Protein oxidation and aging. Science, 257: 1220–1224, 1992.

    PubMed  CAS  Google Scholar 

  • Starke-Reed, P.E., Oliver, C.N.: Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys., 275: 559–567, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.D., Carney, J.M., Starke-Reed, P.E., Oliver, C.N., Stadtman, E.R., Floyd, R.A., Markesbery, W.R.: Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 88: 10540–10543, 1991.

    Google Scholar 

  • Takeyama, N., Matsuo, N., Tanaka, T.: Oxidative damage to mitochondria is mediated by the Ca2+ inner membrane permeability transition. Biochem. J., 294: 719–25, 1993.

    PubMed  CAS  Google Scholar 

  • Trounce, I., Byrne, E., Marzuki, S.: Decline in skeletal muscle mitochondrial chain function: possible factor in aging. Lancet, 25 March: 637–639, 1989.

    Google Scholar 

  • Tummino, P.J., Gafni, A.: A comparative study of succinate-supported respiration and ATP/ADP translocation in liver mitochondrial from adult and old rats. Mech Age. Dev., 59: 177–188, 1991.

    Article  CAS  Google Scholar 

  • Vaux, D.L.: Toward an understanding of the molecular mechanisms of physiological cell death. Proc. Natl. Acad. Sci. USA 90, 786–789, 1993.

    PubMed  CAS  Google Scholar 

  • Viña, J. (Editor). Glutathione: Metabolism and Physiological Functions. CRC Press, Boston, 1990

    Google Scholar 

  • Viña, J., Hems, R., Krebs, H.A.: Maintenance of glutathione content in isolated hepatocytes. Biochem. J. 170, 627–630, 1978

    PubMed  Google Scholar 

  • Viña, J., Sastre, J., Anton, V., Bruseghini, L., Esteras, A., Asensi, M.: Effect of aging on glutathione metabolism. Protection by antioxidants. In Free Radicals and Aging. Emerit, I. and Chance, B. eds. Birkhauser Verlag. Basel. Switzerland 1992, pp. 136–144.

    Google Scholar 

  • Vladimirov, Y.A., Archakov, A.I.: Lipid peroxidation in biomembranes (in Russian) Moscow: Nauka 1972.

    Google Scholar 

  • Vladimirov, Y.A.: Free radical lipid peroxidation in biomembranes: Mechanism, regulation, and biological consequences. In: Free Radicals, Aging and Degenerative Diseases, eds.: J.E. Johnson Jr., R. Walford, D. Harman, J. Miquel. Alan R. Liss, pp: 141–195, 1986.

  • Wallace, D.C.: Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl. Acad. Sci. USA, 91: 8739–8746, 1994.

    PubMed  CAS  Google Scholar 

  • Wolman, M.: Oxidation of lipids and membranes I: in vivo formation of peroxidative lipid polymers. J. Supramol. struct. 3, 80–9, 1975.

    Article  PubMed  CAS  Google Scholar 

  • Yen, T.C., Chen, Y.S., King, K.L., Yeh, S.H., Wei, Y.H.: Liver mitochondrial respiratory functions decline with age. Biochem. Biophys. Res. Commun., 165: 994–1003, 1989.

    Article  Google Scholar 

  • Zamzami, N., Marchetti, P., Castedo, M., Hirsch, T., Susin, S.A., Masse, B., Kroemer, G.: Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS lett. 384: 53–57, 1996a.

    Article  PubMed  CAS  Google Scholar 

  • Zamzami, N.P., Susin, S.A., Marchetti, P., Hirsch, T., Castedo, M., Kroemer, G.: Mitochondrial control of nuclear apoptosis. J. Exp. Med., 183: 1533–1544, 1996b.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Viña MD, PhD.

About this article

Cite this article

Sastre, J., Pallardó, F.V. & Viña, J. Glutathione, oxidative stress and aging. AGE 19, 129–139 (1996). https://doi.org/10.1007/BF02434082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02434082

Keywords

Navigation