Skip to main content

Advertisement

Log in

Fresh and cryopreserved fetal bones replacing massive bone loss in rats

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Cartilaginous fetal bones from rat preserved by deep freezing procedures were compared to comparable fresh bones with regard to the following parameters: chemical composition, water and uronic acid contents; cell viability measured by the rate of proteoglycan synthesis; mineralizationossification status by calcium binding; matrix integrity by the release of uronic acid containing substances; and biological activity as transplants inducing the formation of bone. The transplanted material was chemically analyzed and checked for its rate of proteoglycan synthesis. The quality of the formed bone was similar whether isogeneic or allogeneic, fresh or cryopreserved bone was employed as transplant material. Evidently those various fetal bones may be of clinical value whenever the need for replacement of massive bone loss arises. Although the viability and the cartilaginous nature of the graft are critical, the isogeneity and freshness are of a quantitative advantage only. These biochemical observations were confirmed by roentgenological and histological evaluations of the grafts. An optimal cryopreserving procedure and tests for examining bone candidates for successful grafting are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trueta J (1968) Bone implants. In Trueta J (ed): Studies of the Development and Decay of the Human Frame. William Heinemann Ltd, London, pp 176–186

    Google Scholar 

  2. Gibson T (1968) Bone and cartilage transplantion. In Rapaport FT, Dausset J (eds): Human Transplantation. Grune and Stratton, New York, pp 313–331

    Google Scholar 

  3. Steinman C (1947) The healing of drill-hole defects in the long bone of adult rabbits, especially following the use of embryonic bone transplants. Anat Rec 99:427–441

    Article  PubMed  CAS  Google Scholar 

  4. Gordon SD, Warren RF (1948) Homogenous fetal cartilage grafts to bone. Ann Surg 127:90–97

    PubMed  CAS  Google Scholar 

  5. Chalmers J, Ray RD (1962) The growth of transplanted foetal bones in different immunological environments. J Bone Joint Surg 44B:149–164

    Google Scholar 

  6. Huggins CB, Anderson KB (1976) Growth of transplanted tails of infant rats in adolescent allogeneic recipients. Proc Natl Acad Sci USA 73:3283–3287

    CAS  PubMed  Google Scholar 

  7. Thyberg J, Moskalewski S (1979) Bone formation in cartilage produced by transplanted epiphyseal chondrocytes. Cell Tissue Res 104:77–94

    Google Scholar 

  8. Siegal T, Marcus ZH (1972) Studies on orthotopic homografts and allografts of rat fetal bones. Proc XII SICOT Congr Exc Med ICS 291:142–167

    Google Scholar 

  9. Siegal T, Segal S, Nevo Z, Lev El A, Altaratz C, Katznelson A, Nebel L (1977) Replacement of massive bone loss by fetal bone transplantation: Biochemical and immunologic aspects. Transplant Proc 9:351–353

    CAS  PubMed  Google Scholar 

  10. Segal S, Siegal T, Altaratz H, Lev El A, Nevo Z, Nebel L, Katzenelson A, Feldman M (1979) Bone fetal bone grafts do not elicit allograft rejection, due to protecting anti-Ia alloantibodies: Implications to the immune survival of fetuses in allogenic mothers. Transplantation 28:88–95

    CAS  PubMed  Google Scholar 

  11. Gibson T (1957) Viability of cartilage after freezing. Proc R Soc Lond [Biol] 147:528–529

    CAS  Google Scholar 

  12. Smith AU (1965) Survival of frozen chondrocytes isolated from cartilage of adult animals. Nature 205:782–784

    Google Scholar 

  13. Boyne PJ (1968) Review of the literature on cryopreservation of bone. Cryobiology 4:341–357

    CAS  PubMed  Google Scholar 

  14. Lowe C, Smith AU (1975) Isolation, freezing and storage of rabbit growth plate chondrocytes. Lab Pract 24:511–514

    CAS  PubMed  Google Scholar 

  15. Kukwa A, Wiecko J, Hinek A, Kurnatowski W (1977) Evaluation of preserved allogenic grafts of rabbit costal cartilage with live perichondrium. Acta Med Pol 18:19–27

    CAS  PubMed  Google Scholar 

  16. Schachar NS, Mankin D, Lippiello L, Mankin JJ (1977) The use of glycerol and dimethylsulfoxide (DMSO) in the cryopreservation of articular cartilage prior to allograft transplantation. Trans Orthop Res Soc 2:271

    Google Scholar 

  17. Brighton CT, Shadle CA, Jimenez SA, Lipton M (1979) Articular cartilage preservation and storage. I. Application of tissue culture techniques to the storage of viable articular cartilage. Arthritis Rheum 22:1093–1101

    CAS  PubMed  Google Scholar 

  18. Dische Z (1947) A new specific color reaction of hexuronic acids. J Biol Chem 167:189–197

    CAS  PubMed  Google Scholar 

  19. Oegema TR, Hascall VC, Dziewiatkowski DD (1975) Isolation and characterization of proteoglycans from the Swarm rat chondrosarcoma. J Biol Chem 250:6151–6159

    CAS  PubMed  Google Scholar 

  20. Nevo Z, Horwitz AL, Dorfman A (1972) Synthesis of chondromucoprotein by chondrocytes in suspension culture. Dev Biol 28:219–228

    Article  CAS  PubMed  Google Scholar 

  21. Dziewiatkowski DD (1958) Autoradiographic studies with35S-sulfate. Int Rev Cytol 7:159–193

    Article  CAS  Google Scholar 

  22. Curran RC, Gibson T (1956) The uptake of labeled sulfate by human cartilage cells and its use as a test of viability. Proc R Soc Lond [Biol] 144:572–576

    Article  CAS  Google Scholar 

  23. Pearce AG (1968) Histochemistry Theoretical and Applied, vol. 1. Churchill Livingstone Ltd, London

    Google Scholar 

  24. Glowacki J, Kaban LB, Murray JE, Folkman J, Mulliken JB (1981) Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet: 959–963

  25. Urist MR (1965) Bone formation autoinduction. Science 150:893–899

    CAS  PubMed  Google Scholar 

  26. Reddi AH, Huggins CB (1972) Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci USA 69:1601–1605

    CAS  PubMed  Google Scholar 

  27. Wilson PD (1947) Experiments with a bone bank. Ann Surg 126:932–946

    PubMed  CAS  Google Scholar 

  28. Nevo Z, Lev El A, Siegal T, Segal S, Altaratz C, Dolev S (1977)35S,45Ca incorporation and matrix integrity: valuable parameters for deep-frozen fetal bones for transplantation. Isr J Med Sci 12:975–976

    Google Scholar 

  29. De Palma AF, Tsaltas TT, Mauler GG (1963) Viability of osteochondral grafts as determined by uptake of S35. J Bone Joint Surg 45:1565–1578

    Google Scholar 

  30. Reynolds FC, Oliver DR, Ramsey R (1951) Clinical evaluation of the merthiolate bone bank and homogenous bone grafts. J Bone Joint Surg 33A:873–883

    Google Scholar 

  31. Cleland HN, Sevastikoylan JA (1962) Experimental studies of embryonic bone transplantation. Acta Orthop Scand 32:1–26

    Article  CAS  PubMed  Google Scholar 

  32. Shimomura Y, Yoneda T, Suzuli F (1975) Osteogenesis by chondrocytes from growth cartilage of rat rib. Calicif Tissue Res 19:179–187

    CAS  Google Scholar 

  33. Serafini-Fracassini A, Smith JW (1974) The Structure and Biochemistry of Cartilage (Calcification of Cartilage). Churchill Livingstone, Edinburgh and London, pp 195–205

    Google Scholar 

  34. Meryman HT (1974) Freezing injury and its prevention in living cells. Ann Rev Biophys Bioeng 3:341–363

    Article  CAS  Google Scholar 

  35. Matthews JL, Martin JH, Collins EJ (1970) Intracellular calcium in epithelial, cartilage and bone cells. Calcif Tissue Res 4:37–39

    Article  Google Scholar 

  36. Groer PG, Marshall JH (1973) Mechanism of calcium exchange at bone surfaces. Calcif Tissue Res 12:175–192

    Article  CAS  PubMed  Google Scholar 

  37. Sandborn SB, Stephens H, Bendayan M (1975) The influence of dimethylsulfoxide on cellular ultrastructure. Ann NY Acad Sci 243:122–138

    CAS  PubMed  Google Scholar 

  38. Hirschman A, Dziewiatkowski DD (1966) Proteinpolysaccharide loss during endochondral ossification: Immunochemical evidence. Science 154:393–395

    CAS  PubMed  Google Scholar 

  39. Urist MR, Speer DP, Ibsen KJ, Strates BS (1968) Calcium binding by chondroitin sulfate. Calcif Tissue Res 2:253–261

    Article  CAS  PubMed  Google Scholar 

  40. Pita JC, Cuervo LA, Modgura JE, Muller EJ, Howell DS (1970) Evidence for a role of the proteopolysaccharides in regulation of mineral phase separation in calcifying cartilage. Clin Invest 49:2188–2197

    Article  CAS  Google Scholar 

  41. Smith QT, Lindenbaum A (1971) Composition and calcium binding protein-polysaccharides of calf nasal septum and scapula. Calcif Tissue Res 7:290–298

    Article  CAS  PubMed  Google Scholar 

  42. Reddi AH, Hascall VC, Hascall GK (1978) Changes in proteoglycan types during matrix-induced cartilage and bone development. J Biol Chem 253:2429–2436

    CAS  PubMed  Google Scholar 

  43. Reddi AH, Anderson WA (1976) Collagenous bone matrix-induced endochondral ossification and hemopoiesis. J Cell Biol 69:557–572

    Article  CAS  PubMed  Google Scholar 

  44. Von der Mark K, von der Mark H (1977) The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg 59:458–464

    Google Scholar 

  45. Iwata H, Urist MR (1973) Hyaluronic acid production and removal during bone morphogenesis in implants of bone matrix in rats. Clin Orthop Rel Res 90:236–245

    Google Scholar 

  46. Vittur E, Pugliarello MC, De Bernard B (1972) The calcium binding properties of a glycoprotein isolated from preosseous cartilage. Biochem Res Commun 48:143–152

    Article  CAS  Google Scholar 

  47. Ennever J, Vogel JJ, Levy BM (1974) Lipid bone, in matrix calcification in vitro. Proc Soc Exp Biol Med 145:1386–1388

    CAS  PubMed  Google Scholar 

  48. Pita JC, Howell DS, Kuettner HK (1975) Evidence for a role of lysozyme in endochondral calcification during healing of rickets. In Slavkin HC, Greulich RC (eds): Extracellular Matrix Influences Gene Expression. Academic Press, New York, pp 721–726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevo, Z., Lev-El, A., Siegal, T. et al. Fresh and cryopreserved fetal bones replacing massive bone loss in rats. Calcif Tissue Int 35, 62–69 (1983). https://doi.org/10.1007/BF02405008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02405008

Key words

Navigation