Skip to main content
Log in

Noninvasive characterization of the sound pattern caused by coronary artery stenosis using FTF/FAEST zero tracking filters: Normal/abnormal study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this article, a new approach has been proposed to investigate the extraction of useful information from diastolic heart sounds caused by partially occluded coronary arteries. This method, which estimates and tracks the zeros (poles) of the diastolic heart sounds directly, takes advantage of the FTF/FAEST (Fast Transversal Filters/Fasta Posteriori Error Sequential) technique which possesses the fast convergence property of the Recursive Least Square (RLS) method and the computational simplicity of the Least Mean Square (LMS) method.

In previous studies, the main assumption was that the diastolic heart sounds were a stationary process. Since the production of the heart sounds is not a stationary process, a new approach that performs well not only for stationary but also for nonstationary processes can be required. This requirement can be satisfied by the adaptive FTF/FAEST zero tracking method which provides fast and stable convergence as well as computational efficiency since the adaptive FTF/FAEST zero tracking method is based on the exact minimization of least squares criteria and the filter weights of this method are optimal at each time instant.

The zero trajectories of the diastolic heart sounds were used to diagnose patients as diseased or normal. Results showed that the normal and abnormal records were incorrectly distinguished in only 6 of 35 cases using ablind protocol where analysis was done without knowledge of the actual disease states of the patients. The most discriminant time region of the zero trajectories of the diastolic heart sounds associated with coronary artery disease was between 200 and 300 msec after the second heart sound during the diastolic period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aafif, F. Extraction and linear prediction modeling of the VEP. Piscataway, NJ: Rutgers University; 1989. Ph.D. Thesis.

    Google Scholar 

  2. Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J.. Detection of coronary occlusions using AR modeling of diastolic heart sounds. IEEE Trans. Biomed. Eng. 37:366–373; 1990.

    CAS  PubMed  Google Scholar 

  3. Akay, M.; Semmlow, J.L.; Welkowitz, W.; Bauer, M.; Kostis, J. Noninvasive detection of coronary occlusions using eigenvector methods before and after angioplasty. IEEE Trans. Biomed. Eng. 37:1095–1104; 1990.

    CAS  PubMed  Google Scholar 

  4. Akay, M. Noninvasive detection of coronary artery disease using advanced signal processing methods. Piscataway, NJ: Rutgers University; 1990. Ph.D. Dissertation.

    Google Scholar 

  5. Akay, M.; Welkowitz, W.; Semmlow, J.L.; Kostis, J. Application of the ARMA method to acoustic detection of coronary artery disease. Med. Biol. Eng. Comput. 29:365–372; 1991.

    CAS  PubMed  Google Scholar 

  6. Akay, M.; Welkowitz, W.; Semmlow, J.L.; Kostis, J. Noninvasive detection of coronary artery disease using adaptive line enhancer method. Med. Biol. Eng. Comput. 30: 147–154; 1992.

    CAS  PubMed  Google Scholar 

  7. Akay, M.Y.; Akay, M.; Welkowitz, W.; Semmlow, J.L.; Lefkowicz, S. Spectral analysis of the turbulent sounds created by occluded femoral arteries in dogs. RI: IEEE 18th Annual Northeast Bioengineering Conference; 1992.

  8. Akay, M.Y.; Akay, M.; Welkowitz, W.; Semmlow, J.L.; Lefkowicz, S. Analysis of the turbulent sounds created by occluded femoral arteries in dogs. (submitted for publication).

  9. Akay, M.; Akay, Y.M.; Welkowitz, W.; Semmlow, J.L.; Kostis, J., Application of adaptive FTF/FAEST zero tracking filters to noninvasive characterization of the sound pattern caused by coronary artery stenosis before and after angioplasty. Ann. Biomed. Eng. 21:9–17; 1993.

    CAS  PubMed  Google Scholar 

  10. Bruzzone, S.P.; Kaveh, M. Information tradeoffs in using the sample autocorrelation function in ARMA parameter estimation. IEEE Trans. Acoustics Speech, Signal Processing 32:701–715; 1984.

    Google Scholar 

  11. Box, G.; Pierce, D. Distribution of residual correlations in autoregressive-integrated moving average time series models. J. Am. Statist Assoc. 64:122–145; 1970.

    Google Scholar 

  12. Carayannis, G.C.; Manolakis, D.; Kalouptsidis, N. A fast sequential algorithm for least-squares filtering and prediction. IEEE Trans. Acoustics, Speech, Signal Processing 31: 1394, 1983.

    Google Scholar 

  13. Chen, J.; Vandewalle, J.; Sansen, W.; Vantrappen, G.; Janssens, J. Adaptive method for cancellation of respiratory artifact in electrogastric measurements. Med. Biol. Eng. Comput. 27:57–63; 1989.

    CAS  PubMed  Google Scholar 

  14. Cheng, T.O. Diagnostic murmur caused by coronary artery stenosis. Ann. Intern. Med. 72:543–546; 1970.

    CAS  PubMed  Google Scholar 

  15. Cioffi, J.; Kailath, T. Fast recursive least squares, transversal filters for adaptive filtering. IEEE Trans. ASSP 34: 304; 1984.

    Google Scholar 

  16. Dock, W.; Zoneraich, S. A diastolic murmur arising in a stenosed coronary artery. Am. Journal of Medicine 42:617; 1967.

    CAS  Google Scholar 

  17. Duncan, G.W.; Gruber, T.O.; Dewey, C.F.; Myers, G.S.; Lees, R.S. Evaluation, of carotid stenosis by phonoangiography. New England J. Med. 27:1124–1128; 1975.

    Google Scholar 

  18. Ferrara, E.R.; Widrow, B. Multichannel adapttive filtering for signal enhancement. IEEE Trans. AS-28:606–610; 1981.

    Google Scholar 

  19. Friedlander, B.; Porat, B. Modified Yule-Walker of ARMA spectral estimator. IEEE Trans. Aerospace, Electron. Syst. 20:158–172; 1984.

    Google Scholar 

  20. Ganong, W.F. Review of medical physiology. Los Altos, CA: Lange Medical Publications 1981.

    Google Scholar 

  21. Giddens, D.P. Measurements of disordered flows distal to subtotal vascular stenoses in the thoracic aortas of dogs. Circulation Research 39(1):112–119; 1976.

    CAS  PubMed  Google Scholar 

  22. Guyton, A.C. Textbook of medical physiology. Philadelphia, PA: W.B. Saunders; 1987.

    Google Scholar 

  23. Haykin, S. Adaptive filter theory. Englewood Cliffs, NJ: Prentice, Hall; 1986.

    Google Scholar 

  24. Izraelevitz, D.; Lim, J.S. Spectral characteristics of the overdetermined normal equation method for spectral estimation. Proc. 2nd ASSP Spectral Estimator Workshop; 1983: pp. 49–54.

  25. Kartchner, M.M.; McRae, L.P.; Morrison, F.D. Noninvasive detection and evaluation of carotid occlusive disease. Arch. Surg. 106:528–535; 1973.

    CAS  PubMed  Google Scholar 

  26. Kaveh, M. High resolution estimator for noisy signals. IEEE Trans. Acoustic, Speech, Signal Processing 27:286–297; 1979.

    Google Scholar 

  27. Kaveh, M.; Bruzzone, S.P. A comparative overview of ARMA spectral estimators. Proc. 1st ASSP Spectral Estimation Workshop; pp. 2.4.1–2.4.8.

  28. Kay, S.M.; Marple, S.L. Spectral analysis: A modern perspective. Proc. IEEE; 1981: pp 69: 1380–1419.

    Google Scholar 

  29. Kendall, M.; Stuart, A. The advanced theory of statistics. 4th ed. London: Griffin and Co; 1977.

    Google Scholar 

  30. Kentie, M.A.; Van Der Schee, E.T.; Grashius, J.L.; Smout, A.J.P.M. Adaptive filtering of canine electrogastrographic signals. Part 1. System design. Med. Biol. Eng. Comput. 19:759–764; 1981.

    CAS  PubMed  Google Scholar 

  31. Khalifa, A.M.A.; Giddens, D.P. Characterization of poststenotic flow disturbances. J. Biomechanics 14:275–296; 1981.

    Google Scholar 

  32. Ko, C.C.; Thum, K.L.; Ser, W.; Quek, T.S. A simple fast adaptive zero tracking algorithm. Signal Processing 20:315–323; 1990.

    Article  Google Scholar 

  33. Krupp, M.A. Current medical diagnosis and treatment. Los Altos, CA: Lange Medical Publications; 1982.

    Google Scholar 

  34. Kurtz, K.J. Dynamic vascular auscultation. Am. J. Med. 76:1066–1074; 1984.

    Article  CAS  PubMed  Google Scholar 

  35. Lees, R.S.; Forbes Dewey, Jr., C. Phonoangiography: A new noninvasive diagnostic method for studying arterial disease. Proc. Natl. Acad. Sci. 67:935–942; 1970.

    CAS  PubMed  Google Scholar 

  36. Lees, R.S.; Myers, G.S. Noninvasive diagnosis of arterial disease. Adv. Intern. 23:475–509; 1982.

    Google Scholar 

  37. Makhoul, J. Spectral linear properties and applications. Trans. ASSP 29:282–296; 1981.

    Google Scholar 

  38. Markel, J.D.; Gray, A.H. Linear prediction of speech. 3rd ed. New York: Springer-Verlag; 1982.

    Google Scholar 

  39. Nehorai, A.; Starer, D. Adaptive pole estimation. IEEE ASSP Vol. 38; 1990.

  40. Orfanidis, S.J. Optimum signal processing. New York: Macmillan; 1988.

    Google Scholar 

  41. Orfanidis, S.J.; Vail, L.M. Zero tracking adaptive filters. IEEE Trans. ASSP 34:1566–1572; 1986.

    Google Scholar 

  42. Padmanabhan, V., Fisher, R.; Semmlow, J.L.; Welkowitz, W.; Kostis, J. High sensitivity PCG transducer for extended frequency applications. Proc. IEEE Frontiers Medicine; Seattle. 1989: pp. 57–59.

  43. Ragowski, Z.; Gath, I.; Bental, E. On the prediction of epileptic seizures. Biol. Cybernet. 42:9–15; 1981.

    Google Scholar 

  44. Sangster, J.F.; Oakley, C.M. Diastolic murmur of coronary artery stenosis. Br. Heart J. 35:840–844; 1973.

    CAS  PubMed  Google Scholar 

  45. Semmlow, J.L.; Welkowitz, W.; Kostis, J.; Mackenzie, W. Coronary artery disease-correlates between diastolic auditory characteristic and coronary artery stenoses. IEEE Trans. Biomed. Eng. 30:136–139; 1983.

    CAS  PubMed  Google Scholar 

  46. Semmlow, J.L.; Akay, M.; Welkowitz, W. Noninvasive detection of CAD using parametric analysis methods. IEEE EMBS Magazine 9:33–37; 1990.

    Google Scholar 

  47. Shan, T.J.; Kailath, T. Directional signal separation by adaptive arrays with a root tracking algorithm. Proc. IEEE Int. Conf. ASSP; TX. 1987: pp. 2288–2291.

  48. Slock, D.T.M.; Kailath, T. Fast transversal with data sequence weighting. IEEE Trans. ASSP Vol. 37; 1989.

  49. Teichholtz, L.E.; Steinmetz, M.Y.; Escher, D.; Herman, M.V.; Mahoney, D.V.; Ellestad, M.H.; Naimi, S. Cardiointegram: Detection of CAD using in patients with normal resting electrocardiograms. J. Am. Coll. Cardio., 3:598; 1984.

    Google Scholar 

  50. Vail, L.M. Linearly constrained zero-adaptive algorithms and adaptive array superposition. Piscataway, NJ: Rutgers University; 1985. M.S. Thesis.

    Google Scholar 

  51. Von Mises, R. Mathematical theory of probability and statistics. New York: Academic Press; 1964.

    Google Scholar 

  52. Wang, J.Z.; Tie, B.; Welkowitz, W.; Semmlow, J.L.; Kostis, J. Modeling sound generation in stenosed coronary arteries. IEEE Trans. on BME 37:1087–1094; 1990.

    CAS  Google Scholar 

  53. Welkowitz, W.; Akay, M.; Wang, J.Z.; Semmlow, J.; Kostis, J. A model for disturbed coronary artery flow with phonocardiographic verification. In: Sideman, S., Beyer, R., eds. Activation, circulation and transport in the cardiac muscle, Norwell, MA: Kluwer Academic Publishers; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akay, M., Akay, Y.M., Welkowitz, W. et al. Noninvasive characterization of the sound pattern caused by coronary artery stenosis using FTF/FAEST zero tracking filters: Normal/abnormal study. Ann Biomed Eng 21, 175–182 (1993). https://doi.org/10.1007/BF02367612

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02367612

Keywords

Navigation