Skip to main content
Log in

Risk assessment of adverse pulmonary effects induced by adrenaline β-receptor antagonists and rational drug dosage regimen based on receptor occupancy

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

To clarify the β-1 selectivity of β-adrenergic receptor blocking agents (β-blocking agents) after typical oral doses, the relationships between the effects on exercise heart rate or FEV1 and β-1 or β-2 receptor occupancies (Φ 1 ,Φ 2 ) of seven β-blocking agents, acebutolol, atenolol, metoprolol, oxprenolol, timolol, propranolol, and pindolol were analyzed retrospectively. Nonlinear relationships between the pharmacologic effect andΦ 1 and between the pulmonary adverse effect andΦ 2 were obtained. Based on these findings, a new index of cardiovascular selectivity is proposed, given by the ratio of β-1 receptor occupancy to β-2 receptor occupancy (Φ 1 /Φ 2 ). Using this new index, there was a little difference in β-1 selectivity between acebutolol and pindolol (3.1:1.0), in contrast to a marked difference in β-1 selectivity (320:1) as a conventional index between these two drugs. This finding indicates that even β-1 selective drugs must be administered carefully to patients with pulmonary disease. Furthermore, the relationship between the pharmacologic or pulmonary effects andΦ 1 orΦ 2 has been analyzed quantitatively with a ternary complex model and used to develop rational dosage regimens for β-1 selective β-blocking agents, such as atenolol, to obtain the desired pharmacologic effects with minimum adverse pulmonary effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Cruickshank. The clinical importance of cardioselectivity and lipophilicity in beta blockers.Am. Heart J. 100:160–178 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Y. Yamada, K. Ito, K. Nakamura, Y. Sawada, and T. Iga. Prediction of therapeutic doses of beta-adrenergic receptor blocking agents based on quantitative structure—Pharmacokinetic/pharmacodynamic relationship.Biol. Pharm. Bull. 16:1251–1259 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. A. Miura, Y. Kimura, K. Inoue, T. Matsuzaki, S. Ochi, K. Hamada, S. Hayashi, M. Tamura, S. Kano, and K. Kimura. Pharmacological studies of celiprolol: 1. β-blocking effect, intrinsic sympathomimetic activity, vasodilating and hypotensive effects.Folia Pharmacologica Japonica 95:191–200 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Drugs in Japan Ethical Drugs, Yakugyo Jiho, Japan, 1993.

  5. S. G. Lancaster and E. M. Sorkin. Bisoprolol, a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in hypertension and angina pectoris.Drugs 36:256–285 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. P. B. S. Decalmer, S. S. Chatterjee, J. M. Cruickshank, M. K. Benson, and G. M. Stering. Beta-blockers and asthma.Br. Heart J. 40:184–189 (1978).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. T. Hata, T. Endo, M. Nishio, K. Furuse, J. Ishida, and H. Mashiba. Assessment of antiarrythmic effects of acebutolol.Jap. J. Clin. Exp. Med. 55:1831–1936 (1978).

    Google Scholar 

  8. A. Wellstein, D. Palm, G. G. Belz, and H. F. Pitschner. Receptor binding characteristics and pharmacokinetic properties as a tool for the prediction of clinical effects of β-blockers.Arzneim. Forsch. 35:2–6 (1985).

    CAS  Google Scholar 

  9. C. G. Regardh, K. O. Borg, R. Johansson, G. Johnsson, and L. Palmer. Pharmacokinetic studies on the selective β1-receptor antagonist metoprolol in man.J. Pharmacokin. Biopharm. 2:347–364 (1974).

    Article  CAS  Google Scholar 

  10. T. Seki and M. Miyazaki. The effects of oxprenolol in healthy subjects.J. Kyorin Med. Soc. 7:216–219 (1976).

    CAS  Google Scholar 

  11. O. F. Else, H. Serenson, and I. R. Edwards. Plasma timolol levels after oral and intravenous administration.Eur. J. Clin. Pharmacol. 14:431 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. A. Wellstein, D. Palm, H. F. Pitschner, and G. G. Belz. Receptor binding of propranolol is the missing link between plasma concentration kinetics and the effect-time course in man.Eur. J. Clin. Pharmacol. 29:131–147 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. R. Gugler, W. Herold, and H. J. Dengler. Pharmacokinetics of pindolol in man.Eur. J. Clin. Pharmacol. 7:17–24 (1975).

    Article  Google Scholar 

  14. G. Johnsson, C. G. Regardh, and L. Solvell. Combined pharmacokinetic and pharmacodynamic studies in man of the adrenergic β1-receptor antagonist metoprolol.Acta Pharmacol. Toxicol. 36(Suppl. V):31–44 (1975).

    CAS  Google Scholar 

  15. L. Jordo, P. O. Attman, M. Aurell, L. Johansson, G. Johnsson, and C.-G. Regardh. Pharmacokinetic and pharmacodynamic properties of metoprolol in patients with impaired renal function.Clin. Pharmacokin. 5:169–180 (1980).

    Article  CAS  Google Scholar 

  16. C.-G. Regardh, G. Johnsson, L. Jordo, and L. Solvell. Comparative bioavailability and effect studies on metoprolol administered as ordinary and slow-release tablets in single and multiple doses.Acta Pharmacol. Toxicol. 36(Suppl. V):45–58 (1975).

    CAS  Google Scholar 

  17. W. H. Aellig, H. H. Narjes, E. Nuesch, R. J. Oertle, J. E. Devos, and W. Pacha. A pharmacodynamic pharmacokinetic comparison of pindolol 20 mg retard and conventional tablet.Eur. J. Clin. Pharmacol. 20:179–183 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. R. L. Lalonde, R. J. Straka, J. A. Pieper, M. B. Bottorff, and D. M. Mirvis. Propranolol pharmacodynamic modeling using unbound and total concentration in healthy volunteers.J. Pharmacokin. Biopharm. 15:569–582 (1987).

    Article  CAS  Google Scholar 

  19. A. J. Clark. The reaction between acetyl choline and muscle cells.J. Physiol. 61:530–546 (1926).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. E. J. Ariens. Affinity and intrinsic activity in the theory of competitive inhibition.Arch. Int. Pharmacodyn. 99:32–49 (1954).

    CAS  PubMed  Google Scholar 

  21. M. Nickerson. Receptor occupancy and tissue response.Nature 178:697–698 (1956).

    Article  CAS  PubMed  Google Scholar 

  22. R. P. Stephenson. A modification of receptor theory.Br. J. Pharmacol. 11:379–393 (1956).

    CAS  Google Scholar 

  23. J. G. Riddell, D. W. G. Harron, and R. G. Shanks. Clinical pharmacokinetics of β-adrenoceptor antagonists, an update.Clin. Pharmacokin.12:305–320 (1987).

    Article  CAS  Google Scholar 

  24. H. J. Motulsky and P. A. Insel. Adrenergic receptors in man; direct identification, physiologic regulation, and clinical alterations.New Engl. J. Med. 307:18–29 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. W. H. Frishman. β-Adrenergic blockers.Med. Clin. North Am. 72:37–81 (1988).

    CAS  PubMed  Google Scholar 

  26. P. Leff and D. Harper. Do pharmacological methods for the quantification of agonists work when the ternary complex mechanism operates?J. Theoret. Biol. 140:381–397 (1989).

    Article  CAS  Google Scholar 

  27. M. Pine, L. Favrot, S. Smith, K. McDonald, and C. A. Chidsey. Correlation of plasma propranolol concentration with therapeutic response in patients with angina pectoris.Circulation 52:886–893 (1975).

    Article  CAS  PubMed  Google Scholar 

  28. A. Ohnishi, A. Minegishi, T. Sasaki, T. Suganuma, and T. Ishizaki. Effect of β-adrenoceptor blockade on exercise-induced plasma catecholamine concentrations and their dissipation profile.Br. J. Clin. Pharmacol. 23:339–343 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULT1) for microcomputer.J. Pharmacobiodyn. 4:879–885 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. L. Brown, N. M. Deighton, S. Bals, W. Sohlmann, H.-R. Zerkowski, M. C. Michel, and O.-E. Brodde. Spare receptors for β-adrenoceptor-mediated postive inotropic effects of catacholamines in the human heart.J. Cardiovasc. Pharmacol. 19:222–232 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Matsuyama, K., Ito, K. et al. Risk assessment of adverse pulmonary effects induced by adrenaline β-receptor antagonists and rational drug dosage regimen based on receptor occupancy. Journal of Pharmacokinetics and Biopharmaceutics 23, 463–478 (1995). https://doi.org/10.1007/BF02353469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353469

Key words

Navigation