Skip to main content
Log in

Origin of simple glial epiretinal membranes in an animal model

  • Original Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Severe vitreous hemorrhage was simulated by the injection of 0.2 ml fresh uncoagulated autologous blood into the vitreous cavity of eight rabbits. Four weeks later, hemoglobin released from lysis of the original intravitreal clot had formed a thick layer on the retina. At this stage, many macrophages were conspicuous on the retinal surface and, in addition, in seven of the eight eyes, small cellular membranes were found by scanning electron microscopy. Light and transmission electron microscopy showed these membranes to be derived from accessory glial cells and their progeny. The membranes resembled the simple epiretinal membranes that occur in human eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algvere P, Kock E (1983) Experimental epiretinal membranes induced by intravitreal carbon particles. Am J Ophthalmol 96:345–353

    CAS  PubMed  Google Scholar 

  • Bellhorn MB, Friedman AH, Wise GN, Henkind P (1975) Ultrastructure and clinicopathologic correlation of idiopathic preretinal macular fibrosis. Am J Ophthalmol 79:366–373

    CAS  PubMed  Google Scholar 

  • Bennett TO, Peyman GA, Vlchek JK (1975) Intravitreal injection of autologous blood in primates. Can J Ophthalmol 10:248–254

    CAS  PubMed  Google Scholar 

  • Burke JM (1980) Phagocytes that invade the vitreous after injury stimulate DNA synthesis in neural retina in vitro. Graefe's Arch Clin Exp Ophthalmol 214:223–227

    CAS  Google Scholar 

  • Burke JM (1981) Vitreal superoxide and superoxide dismutase after hemorrhagic injury: the role of invasive cells. Invest Ophthalmol Vis Sci 20:435–441

    CAS  PubMed  Google Scholar 

  • Campochiaro PA, Glaser BM (1985) Platelet-derived growth factor is chemotactic for human retinal pigment epithelial cells. Arch Ophthalmol 103:576–579

    CAS  PubMed  Google Scholar 

  • Campochiaro PA, Jerdan JA, Glaser BM (1984) Serum contains chemoattractants for human retinal pigment epithelial cells. Arch Ophthalmol 102:1830–1833

    CAS  PubMed  Google Scholar 

  • Campochiaro PA, Jerdan JA, Glaser BM, Cardin A, Michels RG (1985a) Vitreous aspirates from patients with proliferative vitreoretinopathy stimulate retinal pigment epithelial cell migration. Arch Ophthalmol 103:1403–1405

    CAS  PubMed  Google Scholar 

  • Campochiaro PA, Kaden IH, Vidaurri-Leal J, Glaser BM (1985b) Cryotherapy enhances intravitreal dispersion of viable retinal pigment epithelial cells. Arch Ophthalmol 103:434–436

    CAS  PubMed  Google Scholar 

  • Cleary PE, Ryan SJ (1979) Method of production and natural history of experimental posterior penetrating eye injury in the rhesus monkey. Am J Ophthalmol 88:212–220

    CAS  PubMed  Google Scholar 

  • Constable IJ, Horne R, Slatter DH, Chester GH, Cooper RL (1981) Regeneration of retinal limiting membranes after chorioretinal biopsy in dogs. Invest Ophthalmol Vis Sci 20:246–251

    CAS  PubMed  Google Scholar 

  • Ehrenberg M, Thresher RJ, Machemer R (1984) Vitreous hemorrhage nontoxic to retina as a stimulator of glial and fibrous proliferation. Am J Ophthalmol 97:611–626

    CAS  PubMed  Google Scholar 

  • Foos RY (1974) Vitreoretinal juncture — simple epiretinal membranes. Graefe's Arch Clin Exp Ophthalmol 189:231–250

    CAS  Google Scholar 

  • Foos RY (1977) Surface wrinkling retinopathy. In: Freeman HM, Hirose T, Schepens CL (eds) Vitreous surgery and advances in fundus diagnosis and treatment. Appleton-Century-Crofts, New York, pp 23–38

    Google Scholar 

  • Foos RY, Gloor BP (1975) Vitreoretinal juncture; healing of experimental wounds. Graefe's Arch Clin Exp Ophthalmol 196:213–230

    CAS  Google Scholar 

  • Forrester JV, Grierson I, Lee WR (1978) Comparative studies of erythrophagocytosis in the rabbit and human vitreous. Graefe's Arch Clin Exp Ophthalmol 208:143–158

    CAS  Google Scholar 

  • Hiscott PS, Grierson I, Trombetta CJ, Rahi AHS, Marshall J, McLeod D (1984) Retinal and epiretinal glia — an immunohistochemical study. Br J Ophthalmol 68:698–707

    CAS  PubMed  Google Scholar 

  • Laqua H, Machemer R (1975) Glial cell proliferation in retinal detachment (massive periretinal proliferation). Am J Ophthalmol 80:602–618

    CAS  PubMed  Google Scholar 

  • Machemer R (1978) Pathogenesis and classification of massive periretinal proliferation. Br J Ophthalmol 62:737–747

    CAS  PubMed  Google Scholar 

  • Machemer R, van Horn D, Aaberg TM (1978) Pigmented epithelial proliferation in human retinal detachment with massive periretinal proliferation. Am J Ophthalmol 85:181–191

    CAS  PubMed  Google Scholar 

  • McCord J, Stokes S, Wong K (1979) Superoxide radical as a phagocyte-produced chemical mediator of inflammation. In: Weissman G (ed) Advances in inflammation research, vol 1. Raven Press, New York, pp 273–280

    Google Scholar 

  • McLeod D, Marshall J, Grierson I (1981) Epimacular membrane peeling. Trans Ophthalmol Soc UK 101:170–180

    CAS  PubMed  Google Scholar 

  • Miller B, Miller H, Patterson R, Ryan SJ (1986) Retinal wound healing. Cellular activity at the vitreoretinal interface. Arch Ophthalmol 104:281–285

    CAS  PubMed  Google Scholar 

  • Newsome DA, Rodrigues MM, Machemer R (1981) Human massive periretinal proliferation. In vitro characteristics of cellular components. Arch Ophthalmol 99:873–880

    CAS  PubMed  Google Scholar 

  • Roth AM, Foos RY (1971) Surface wrinkling retinopathy in eyes enucleated at autopsy. Trans Am Acad Ophthalmol Otolaryngol 75:1047–1058

    CAS  PubMed  Google Scholar 

  • Smelser GK, Ishikawa T, Pei YF (1965) Electron microscopic studies of intraretinal spaces; diffusion of particulate materials. In: Rohen JW (ed) The structure of the eye. Schattauer, Stuttgart, pp 109–115

    Google Scholar 

  • Topping TM, Abrams GW, Machemer R (1979) Experimental double-perforating injury of the posterior segment in rabbit eyes. The natural history of intraocular proliferation. Arch Ophthalmol 97:735–742

    CAS  PubMed  Google Scholar 

  • Wise GN (1975) Clinical features of idiopathic preretinal macular fibrosis. Am J Ophthalmol 79:349–357

    CAS  PubMed  Google Scholar 

  • Yeo JH, Sadeghi J, Campochiaro PA, Green WR, Glaser BM (1986) Intravitreous fibronectin and platelet-derived growth factor. New model for traction retinal detachment. Arch Ophthalmol 104:417–421

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lean, J.S. Origin of simple glial epiretinal membranes in an animal model. Graefe’s Arch Clin Exp Ophthalmol 225, 421–425 (1987). https://doi.org/10.1007/BF02334169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02334169

Keywords

Navigation