Skip to main content
Log in

Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Acute administration of absolute ethanol (10 ml/kg) per os to fasted mice produced extensive renal failure as measured by a rise in blood urea nitrogen and creatinine. Pretreatment with oral administration of tetramethylpyrazine (TMP) prevented such failure. The maximal effect against absolute ethanol-induced renal failure could be observed 1 h after TMP administration. In order to further investigate the renal protective mechanism of TMP, experiments on lipid peroxidation and superoxide scavenging activity were conducted. Renal homogenates made from mice treated with ethanol showed that TMP pretreatment had an antioxidant effect. Mice in acute renal failure had higher malonic dialdehyde concentrations than those pretreated with TMP. The renal protective mechanism of TMP was attributed, in part, to its prominent superoxide scavenging effect, which protects the kidney from superoxide-induced renal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baud L, Ardaillou R. Reactive oxygen species: Production and role in the kidney. Am J Physiol 251:F765-F776;1986.

    PubMed  Google Scholar 

  2. Bird JE, Evan AP, Peterson OW, Blantz RC. Early events in ischemic renal failure in the rat: Effects of antioxidant therapy. Kidney Int 35:1282–1289;1989.

    PubMed  Google Scholar 

  3. Bird JE, Milhoan K, Wilson CB, Young SG, Mundy CA, Parthasarathy S, Blantz RC. Ischemic acute renal failure and antioxidant therapy in the rat. The relation between glomerular and tubular dysfunction. J Clin Invest 81:1630–1638;1988.

    PubMed  Google Scholar 

  4. Feng J, Liu R, Wu G, Tang S. Effects of tetramethylpyrazine on the release of PGI2 and TXA2 in the hypoxic isolated rat heart. Mol Cell Biochem 167:153–158;1997.

    Article  PubMed  Google Scholar 

  5. Gonzalez-Michaca L, Soto-Ramirez LE, Rodriguez R, Gamba G. Viral hepatitis C in patients with terminal chronic renal insufficiency. 3. Viral quantification (in Spanish). Rev. Invest Clin 53:21–27;2001.

    PubMed  Google Scholar 

  6. Grisold M, Koppel H, Gasser R. First description of the effect of a non-sulfonylurea compound, tetramethylpyrazine, on coronary response to desoxyglucose-induced ischemia. Acta Med Austriaca 25:16–20;1998.

    PubMed  Google Scholar 

  7. Hansson R, Jonsson O, Lundstam S, Pettersson S, Schersten T, Waldenstrom J. Effects of free radical scavengers on renal circulation after ischemia in the rabbit. Clin Sci (Lond) 65:605–610;1983.

    Google Scholar 

  8. Kako K, Kato M, Matsuoka T, Mustapha A. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol 254:C330-C337;1988.

    PubMed  Google Scholar 

  9. Kera Y, Komura S, Ohbor Y, Kiriyama T, Inoue K. Ethanol induced changes in lipid peroxidation and nonprotein sulfhydryl content. Different sensitivities in rat liver and kidney. Res Commun Chem Pathol Pharmacol 47:203–209;1985.

    PubMed  Google Scholar 

  10. Lowell BB, Goodman MN. Protein sparing in skeletal muscle during prolonged starvation. Dependence on lipid fuel availability. Diabetes 36:14–19;1987.

    PubMed  Google Scholar 

  11. McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760;1968.

    PubMed  Google Scholar 

  12. Nath KA, Paller MS. Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int 38:1109–1117;1990.

    PubMed  Google Scholar 

  13. Neumayer HH, Kunzendorf U. Renal protection with the calcium antagonists. J Cardiovasc Pharmacol 18(suppl 1):S11-S18;1991.

    Google Scholar 

  14. Ni Z, Wang XQ, Vaziri ND. Nitric oxide metabolism in erythropoietin-induced hypertension: Effect of calcium channel blockade. Hypertension 32:724–729;1998.

    PubMed  Google Scholar 

  15. Nosaka K, Clarkson PM, Apple FS. Time course of serum protein changes after strenuous exercise of the forearm flexors. J Lab Clin Med 119:183–188;1992.

    PubMed  Google Scholar 

  16. Paller MS, Hedlund BE. Role of iron in postischemic renal injury in the rat. Kidney Int 34:474–480;1988.

    PubMed  Google Scholar 

  17. Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74:1156–1164;1984.

    PubMed  Google Scholar 

  18. Pang PK, Shan JJ, Chiu KW. Tetramethylpyrazine, a calcium antagonist. Planta Med 62:431–435;1996.

    PubMed  Google Scholar 

  19. Pu Z, Zhu W, Jing Z, Zeng Z, Zuo W. Effect of tetramethyl pyrazine on coronary vasoconstriction induced by endothelin-1 in dogs (in Chinese). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 18:133–137;1996.

    PubMed  Google Scholar 

  20. Saad SY, Najjar TA, Al-Rikabi AC. The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacol Res 43:211–218;2001.

    PubMed  Google Scholar 

  21. Schaefer RM, Weipert J, Moser M, Peter G, Heidbreder E, Horl WH, Heidland A. Reduction of urea generation and muscle protein degradation by adrenalectomy in acutely uremic rats. Nephron 48:149–153;1988.

    PubMed  Google Scholar 

  22. Shah SV. Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int 35:1093–1106;1989.

    PubMed  Google Scholar 

  23. Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP. Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: Antioxidant defense system. Pharmacol Toxicol 86:234–241;2000.

    PubMed  Google Scholar 

  24. Szelenyi I, Brune K. Possible role of oxygen free radicals in ethanol-induced gastric mucosal damage in rats. Dig Dis Sci 33:865–871;1988.

    Article  PubMed  Google Scholar 

  25. Tarasova NS. Lipid peroxidation in chronic alcoholics with renal lesions (in Russian). Ter Arkh 70:23–25;1998.

    Google Scholar 

  26. Tsuboi N, Yoshida H, Shibamura K, Hikita M, Tomonari H, Kuriyama S, Sakai O. Acute renal failure after binge drinking of alcohol and nonsteroidal antiinflammatory drug ingestion. Intern Med 36:102–106;1997.

    PubMed  Google Scholar 

  27. Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehydethiobarbituric acid adduct. Clin Chem 33:214–220;1987.

    PubMed  Google Scholar 

  28. Yuda Y, Tanaka J, Hirano F, Igarashi K, Satoh T. Participation of lipid peroxidation in rat pertussis vaccine pleurisy. 3. Thiobarbituric acid (TBA) reactant and lysosomal enzyme. Chem Pharm Bull (Tokyo) 39:505–506;1991.

    Google Scholar 

  29. Zeng Z, Zhu W, Zhou X, Jin Z, Liu H, Chen X, Pan J, Demura H, Naruse M, Shi Y. Tetramethylpyrazine, a Chinese drug, blocks coronary vasoconstriction by endothelin-1 and decreases plasma endothelin-1 levels in experimental animals. J Cardiovasc Pharmacol 31(suppl 1):S313-S316;1998.

    Article  PubMed  Google Scholar 

  30. Zhang SR, Cui GJ, Xu RM, Han C, Guo JY. Antiulcer effect of polycyclicamine compound HH01 on experimental gastric ulcer in rats (in Chinese). Yao Xue Xue Bao 30:103–106;1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, CF., Lin, MH., Lin, CC. et al. Protective effect of tetramethylpyrazine on absolute ethanol-induced renal toxicity in mice. J Biomed Sci 9, 299–302 (2002). https://doi.org/10.1007/BF02256584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256584

Key Words

Navigation