Skip to main content

Advertisement

Log in

Lentiviral vectors

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Vectors based on lentiviruses have reached a state of development such that clinical studies using these agents as gene delivery vehicles have now begun. They have particular advantages for certain in vitro and in vivo applications especially the unique capability of integrating genetic material into the genome of non-dividing cells. Their rapid progress into clinical use reflects in part the huge body of knowledge which has accumulated about HIV in the last 20 years. Despite this, many aspects of viral assembly on which the success of these vectors depends are rather poorly understood. Sufficient is known however to be able to produce a safe and reproducible high titre vector preparation for effective transduction of growth-arrested tissues such as neural tissue, muscle and liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiken C. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol 71:5871–5877;1997.

    PubMed  Google Scholar 

  2. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS. High efficiency gene transfer into CD34(+) cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585;1996.

    PubMed  Google Scholar 

  3. Aldovini A, Young RA. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64:1920–1926;1990.

    PubMed  Google Scholar 

  4. Alford RL, Honda S, Lawrence CB, Belmont JW. RNA secondary structure analysis of the packaging signal for Moloney murine leukemia virus. Virology 183:611–619;1991.

    Article  PubMed  Google Scholar 

  5. Amarasinghe GK, De Guzman RN, Turner RB, Summers MF. NMR structure of stemloop SL2 of the HIV-1 psi RNA packaging signal reveals a novel A-U-A base-triple platform. J Mol Biol 299:145–156;2000.

    Article  PubMed  Google Scholar 

  6. Anson DS, Fuller M. Rational development of a HIV-1 gene therapy vector. J Gene Med 5:829–838;2003.

    Article  PubMed  Google Scholar 

  7. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, Kingsman SM, Kingsman AJ, Mazarakis ND. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 22:10302–10312;2002.

    PubMed  Google Scholar 

  8. Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B, Debyser Z. Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13:841–853;2002.

    Article  PubMed  Google Scholar 

  9. Bainbridge JW, Stephens C, Parsley K, Demaison C, Halfyard A, Thrasher AJ, Ali RR. In vivo gene transfer to the mouse eye using an HIV-based lentiviral vector: Efficient long-term transduction of corneal endothelium and retinal pigment epithelium. Gene Ther 8:1665–1668;2001.

    Article  PubMed  Google Scholar 

  10. Banks JD, Linial ML. Secondary structure analysis of a minimal avian leukosis-sarcoma virus packaging signal. J Virol 74:456–464;2000.

    PubMed  Google Scholar 

  11. Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P. Lentiviral vectors as a gene delivery system in the mouse midbrain: Cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF. Exp Neurol 164:15–24;2000.

    Article  PubMed  Google Scholar 

  12. Berkhout B, Schoneveld I. Secondary structure of the HIV-2 leader RNA comprising the tRNA-primer binding site. Nucleic Acids Res 21:1171–1178;1993.

    PubMed  Google Scholar 

  13. Berkowitz R, Fisher J, Goff SP. RNA packaging. Curr Top Microbiol Immunol 214:177–218;1996.

    PubMed  Google Scholar 

  14. Berkowitz RD, Hammarskjold ML, Helga Maria C, Rekosh D, Goff SP. 5′ regions of HIV-1 RNAs are not sufficient for encapsidation: Implications for the HIV-1 packaging signal. Virology 212:718–723;1995.

    Article  PubMed  Google Scholar 

  15. Berkowitz RD, Ilves H, Plavec I, Veres G. Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity. Virology 279:116–129;2001.

    Article  PubMed  Google Scholar 

  16. Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649;1997.

    PubMed  Google Scholar 

  17. Bosch A, Perret E, Desmaris N, Trono D, Heard JM. Reversal of pathology in the entire brain of mucopolysaccharidosis type VII mice after lentivirus-mediated gene transfer. Hum Gene Ther 11:1139–1150;2000.

    Article  PubMed  Google Scholar 

  18. Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM Jr, Sauter SL, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL. Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. Proc Natl Acad Sci USA 99:6216–6221;2002.

    Article  PubMed  Google Scholar 

  19. Carroll R, Lin JT, Dacquel EJ, Mosca JD, Burke DS, St-Louis DC. A human immunodeficiency virus type 1 (HIV-1) based retroviral vector system utilising stable HIV-1 packaging cell lines. J Virol 68:6047–6051;1994.

    PubMed  Google Scholar 

  20. Chinnasamy N, Chinnasamy D, Toso JF, Lapointe R, Candotti F, Morgan RA, Hwu P. Efficient gene transfer to human peripheral blood monocyte-derived dendritic cells using human immunodeficiency virus type 1-based lentiviral vectors. Hum Gene Ther 11:1901–1909;2000.

    Article  PubMed  Google Scholar 

  21. Chiorini JA, Kim F, Yang L, Kotin RM. Cloning and characterization of adeno-associated virus type 5. J Virol 73:1309–1319;1999.

    PubMed  Google Scholar 

  22. Clavel F, Orenstein JM. A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64:5230–5234;1990.

    PubMed  Google Scholar 

  23. Clever J, Sassetti C, Parslow TG. RNA secondary structure and binding sites for gag gene products in the 5′ packaging signal of human immunodeficiency virus type 1. J Virol 69:2101–2109;1995.

    PubMed  Google Scholar 

  24. Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK. High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69:7430–7436;1995.

    PubMed  Google Scholar 

  25. Curran MA, Kaiser SM, Achacoso PL, Nolan GP. Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 1:31–38;2000.

    Article  PubMed  Google Scholar 

  26. Damgaard CK, Dyhr Mikkelsen H, Kjems J. Mapping the RNA binding sites for human immunodeficiency virus type 1 Gag and NC proteins within the complete HIV-1 and-2 untranslated leader regions. Nucleic Acids Res 26:3667–3676;1998.

    Article  PubMed  Google Scholar 

  27. Das AT, Klaver B, Klasens BIF, van Wamel JLB, Berkout B. A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol 71:2346–2356;1997.

    PubMed  Google Scholar 

  28. De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF. Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279:384–388;1998.

    Article  PubMed  Google Scholar 

  29. De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14:1193–1206;2003.

    Article  PubMed  Google Scholar 

  30. Deglon N, Tseng JL, Bensadoun JC, Zurn AD, Arsenijevic Y, Pereira de Almeida L, Zufferey R, Trono D, Aebischer P. Self-inactivating lentiviral vectors with enhanced transgene expression and potential gene transfer system in Parkinson's disease. Hum Gene Ther 11:179–190;2000.

    Article  PubMed  Google Scholar 

  31. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C, Grez M, Thrasher AJ. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency [correction of immunodeficiency] virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 13:803–813;2002.

    Article  PubMed  Google Scholar 

  32. Dorman N, Lever AML. Comparison of viral genomic RNA sorting mechanisms in HIV-1, HIV-2, and MMLV. J Virol 74:11413–11417;2000.

    Article  PubMed  Google Scholar 

  33. Dropulic B. Lentivirus in the clinic. Mol Ther 4:511–512;2001.

    Article  PubMed  Google Scholar 

  34. Dvorin JD, Bell P, Maul GG, Yamashita M, Emerman M, Malim MH. Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. J Virol 76:12087–12096;2002.

    Article  PubMed  Google Scholar 

  35. Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, Radeke R, Bukovsky A, Consiglio A, Naldini L. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12:981–997;2001.

    Article  PubMed  Google Scholar 

  36. Fleury S, Simeoni E, Zuppinger C, Deglon N, von Segesser LK, Kappenberger L, Vassalli G. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 107:2375–2382;2003.

    Article  PubMed  Google Scholar 

  37. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood DOI 10.1182;2003.

    Google Scholar 

  38. Follenzi A, Sabatino G, Lombardo A, Boccaccio C, Naldini L. Efficient gene delivery and targeted expression to hepatocytes in vivo by improved lentiviral vectors. Hum Gene Ther 13:243–260;2002.

    Article  PubMed  Google Scholar 

  39. Georgievska B, Kirik D, Bjorklund A. Aberrant sprouting and downregulation of tyrosine hydroxylase in lesioned nigrostriatal dopamine neurons induced by long-lasting overexpression of glial cell line derived neurotrophic factor in the striatum by lentiviral gene transfer. Exp Neurol 177:461–474;2002.

    Article  Google Scholar 

  40. Giannini C, Morosan S, Tralhao JG, Guidotti JE, Battaglia S, Mollier K, Hannoun L, Kremsdorf D, Gilgenkrantz H, Charneau P. A highly efficient, stable, and rapid approach for ex vivo human liver gene therapy via a FLAP lentiviral vector. Hepatology 38:114–122;2003.

    Article  PubMed  Google Scholar 

  41. Greatorex J, Gallego J, Varani G, Lever A. Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal. J Mol Biol 322:543–557;2002.

    Article  PubMed  Google Scholar 

  42. Griffin SDC, Allen JF, Lever AML. The major HIV-2 packaging signal is present on all HIV-2 RNA species: Co-translational RNA encapsidation and limiting Gag protein confer specificity. J Virol 75:12058–12069;2001.

    Article  PubMed  Google Scholar 

  43. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F. Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96:1327–1333;2000.

    PubMed  Google Scholar 

  44. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419;2003.

    Article  PubMed  Google Scholar 

  45. Harrison GP, Lever AML. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol 66:4144–4153;1992.

    PubMed  Google Scholar 

  46. Haselhorst D, Kaye JF, Lever AML. Development of cell lines stably expressing human immunodeficiency virus type 1 proteins for studies in encapsidation and gene transfer. J Gen Virol 79:231–237;1998.

    PubMed  Google Scholar 

  47. Hotzel I, Cheevers WP. Host range of small-ruminant lentivirus cytopathic variants determined with a selectable caprine arthritis-encephalitis virus pseudotype system. J Virol 75:7384–7391;2001.

    Article  PubMed  Google Scholar 

  48. Igarashi T, Miyake K, Kato K, Watanabe A, Ishizaki M, Ohara K, Shimada T. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther 10:219–226;2003.

    Article  PubMed  Google Scholar 

  49. Ikeda Y, Collins MK, Radcliffe PA, Mitrophanous KA, Takeuchi Y. Gene transduction efficiency in cells of different species by HIV and EIAV vectors. Gene Ther 9:932–938;2002.

    Article  PubMed  Google Scholar 

  50. Ikeda Y, Goto Y, Yonemitsu Y, Miyazaki M, Sakamoto T, Ishibashi T, Tabata T, Ueda Y, Hasegawa M, Tobimatsu S, Sueishi K. Simian immunodeficiency virus-based lentivirus vector for retinal gene transfer: A preclinical safety study in adult rats. Gene Ther 10:1161–1169;2003.

    Article  PubMed  Google Scholar 

  51. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M. Continuous hightiter HIV-1 vector production. Nat Biotechnol 21:569–572;2003.

    Article  PubMed  Google Scholar 

  52. Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73:4991–5000;1999.

    PubMed  Google Scholar 

  53. Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317;1997.

    PubMed  Google Scholar 

  54. Kafri T, van Pragg H, Ouyang L, Gage FH, Verma IM. A packaging cell line for lentivirus vectors. J Virol 73:576–584;1999.

    PubMed  Google Scholar 

  55. Kaye JF, Lever AML. Trans-acting proteins involved in RNA encapsidation and viral assembly in human immunodeficiency virus type 1. J Virol 70:880–886;1996.

    PubMed  Google Scholar 

  56. Kaye JF, Lever AML. Human immunodeficiency virus types 1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J Virol 73:3023–3031;1999.

    PubMed  Google Scholar 

  57. Kerwood DJ, Cavaluzzi MJ, Borer PN. Structure of SL4 RNA from the HIV-1 packaging signal. Biochemistry 40:14518–14529;2001.

    Article  PubMed  Google Scholar 

  58. Knight JB, Si ZH, Stolzfus CM. A base paired structure in the avian sarcoma virus 5′ leader is required for efficient encapsidation of RNA. J Virol 68:4493–4502;1994.

    PubMed  Google Scholar 

  59. Kobayashi M, Iida A, Ueda Y, Hasegawa M. Pseudotyped lentivirus vectors derived from simian immunodeficiency virus SIVagm with envelope glycoproteins from paramyxovirus. J Virol 77:2607–2614;2003.

    Article  PubMed  Google Scholar 

  60. Kordower JH, Bloch J, Ma SY, Chu Y, Palfi S, Roitberg BZ, Emborg M, Hantraye P, Deglon N, Aebischer P. Lentiviral gene transfer to the nonhuman primate brain. Exp Neurol 160:1–16;1999.

    Article  PubMed  Google Scholar 

  61. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290:767–773;2000.

    Article  PubMed  Google Scholar 

  62. Kostic C, Chiodini F, Salmon P, Wiznerowicz M, Deglon N, Hornfeld D, Trono D, Aebischer P, Schorderet DF, Munier FL, Arsenijevic Y. Activity analysis of housekeeping promoters using self-inactivating lentiviral vector delivery into the mouse retina. Gene Ther 10:818–821;2003.

    Article  PubMed  Google Scholar 

  63. Kuate S, Wagner R, Uberla K. Development and characterization of a minimal inducible packaging cell line for simian immunodeficiency virus-based lentiviral vectors. J Gene Med 4:347–355;2002.

    Article  PubMed  Google Scholar 

  64. Lai Z, Brady RO. Gene transfer into the central nervous system in vivo using a recombinant lentivirus vector. J Neurosci Res 67:363–371;2002.

    Article  PubMed  Google Scholar 

  65. Lever A, Gottlinger H, Haseltine W, Sodroski J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J Virol 63:4085–4087;1989.

    PubMed  Google Scholar 

  66. Lever AML. HIV RNA packaging and lentivirus-based vectors. Adv Pharmacol 48:1–28;2000.

    PubMed  Google Scholar 

  67. Lever AML. Lentiviral vectors in gene therapy. In: Cooper D, ed. Nature Encyclopedia of the Human Genome. Basingstoke, Macmillan, 2003.

    Google Scholar 

  68. Levin JG, Rosenak MJ. Synthesis of murine leukemia virus proteins associated with virions assembled in actinomycin D-treated cells: Evidence for persistence of viral messenger RNA. Proc Natl Acad Sci USA 73:1154–1158;1976.

    PubMed  Google Scholar 

  69. Limon A, Nakajima N, Lu R, Ghory HZ, Engelman A. Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. J Virol 76:12078–12086;2002.

    Article  PubMed  Google Scholar 

  70. Linial M, Medeiros E, Hayward WS. An avian oncovirus mutant (SE 21Q1b) deficient in genomic RNA: Biological and biochemical characterization. Cell 15:1371–1381;1978.

    Article  PubMed  Google Scholar 

  71. Linial ML, Miller AD. Retroviral RNA packaging: Sequence requirements and implications. In: Swanstrom R, Vogt PK, eds. Retroviruses: Strategies of replication. Berlin, Springer, 125–152;1990.

    Google Scholar 

  72. Lisziewicz J, Gabrilovich DI, Varga G, Xu J, Greenberg PD, Arya SK, Bosch M, Behr JP, Lori F. Induction of potent human immunodeficiency virus type 1-specific T-cell-restricted immunity by genetically modified dendritic cells. J Virol 75:7621–7628;2001.

    Article  PubMed  Google Scholar 

  73. Loewen N, Leske DA, Chen Y, Teo WL, Saenz DT, Peretz M, Holmes JM, Poeschla EM. Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. J Gene Med 5:1009–1017;2003.

    Article  PubMed  Google Scholar 

  74. Lotery AJ, Derksen TA, Russell SR, Mullins RF, Sauter S, Affatigato LM, Stone EM, Davidson BL. Gene transfer to the nonhuman primate retina with recombinant feline immunodeficiency virus vectors. Hum Gene Ther 13:689–696;2002.

    Article  PubMed  Google Scholar 

  75. Lynch CM, Hara PS, Leonard JC, Williams JK, Dean RH, Geary RL. Adeno-associated virus vectors for vascular gene delivery. Circ Res 80:497–505;1997.

    PubMed  Google Scholar 

  76. Manganini M, Serafini M, Bambacioni F, Casati C, Erba E, Follenzi A, Naldini L, Bernasconi S, Gaipa G, Rambaldi A, Biondi A, Golay J, Introna M. A human immunodeficiency virus type 1 pol gene-derived sequence (cPPT/CTS) increases the efficiency of transduction of human nondividing monocytes and T lymphocytes by lentiviral vectors. Hum Gene Ther 13:1793–1807;2002.

    Article  PubMed  Google Scholar 

  77. Mangeot PE, Duperrier K, Negre D, Boson B, Rigal D, Cosset FL, Darlix JL. High levels of transduction of human dendritic cells with optimized SIV vectors. Mol Ther 5:283–290;2002.

    Article  PubMed  Google Scholar 

  78. Mangeot PE, Negre D, Dubois B, Winter AJ, Leissner P, Mehtali M, Kaiserlian D, Cosset FL, Darlix JL. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol 74:8307–8315;2000.

    Article  PubMed  Google Scholar 

  79. Martin F, Chowdhury S, Neil S, Phillipps N, Collins MK. Envelope-targeted retrovirus vectors transduce melanoma xenografts but not spleen or liver. Mol Ther 5:269–274;2002.

    Article  PubMed  Google Scholar 

  80. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121;2001.

    Article  PubMed  Google Scholar 

  81. McCann EM, Lever AML. Location ofcis-acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. J Virol 71:4133–4137;1997.

    PubMed  Google Scholar 

  82. McClure MO, Marsh M, Weiss RA. Human immunodeficiency virus infection of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7:513–518;1988.

    PubMed  Google Scholar 

  83. Medina MF, Kobinger GP, Rux J, Gasmi M, Looney DJ, Bates P, Wilson JM. Lentiviral vectors pseudotyped with minimal filovirus envelopes increased gene transfer in murine lung. Mol Ther 8:777–789;2003.

    Article  PubMed  Google Scholar 

  84. Miller AD. Retrovirus packaging cells. Hum Gene Ther 1:5–14;1990.

    PubMed  Google Scholar 

  85. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N. Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818;1999.

    Article  PubMed  Google Scholar 

  86. Miyazaki M, Ikeda Y, Yonemitsu Y, Goto Y, Sakamoto T, Tabata T, Ueda Y, Hasegawa M, Tobimatsu S, Ishibashi T, Sueishi K. Simian lentiviral vector-mediated retinal gene transfer of pigment epithelium-derived factor protects retinal degeneration and electrical defect in Royal College of Surgeons rats. Gene Ther 10:1503–1511;2003.

    Article  PubMed  Google Scholar 

  87. Miyoshi H, Takahashi M, Gage FH, Verma IM. Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci USA 94:10319–10323;1997.

    Article  PubMed  Google Scholar 

  88. Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, Chettab K, Legras C, Ronfort C, Verdier G, Mornex JF, Chebloune Y. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol 143:681–695;1998.

    Article  PubMed  Google Scholar 

  89. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34:297–302;2003.

    Article  PubMed  Google Scholar 

  90. Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388;1996.

    Article  PubMed  Google Scholar 

  91. Naldini L, Blomer U, Gallay P, Ory D, Mulligan P, Gage FH, Verma IM, Trono D. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267;1996.

    PubMed  Google Scholar 

  92. Negre D, Mangeot PE, Duisit G, Blanchard S, Vidalain PO, Leissner P, Winter AJ, Rabourdin-Combe C, Mehtali M, Moullier P, Darlix JL, Cosset FL. Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. Gene Ther 7:1613–1623;2000.

    Article  PubMed  Google Scholar 

  93. Nguyen TH, Oberholzer J, Birraux J, Majno P, Morel P, Trono D. Highly efficient lentiviral vector-mediated transduction of nondividing, fully reimplantable primary hepatocytes. Mol Ther 6:199–209;2002.

    Article  PubMed  Google Scholar 

  94. Novo FJ, Gorecki DC, Goldspink G, MacDermot KD. Gene transfer and expression of human alpha-galactosidase from mouse muscle in vitro and in vivo. Gene Ther 4:488–492;1997.

    Article  PubMed  Google Scholar 

  95. Oertel M, Rosencrantz R, Chen YQ, Thota PN, Sandhu JS, Dabeva MD, Pacchia AL, Adelson ME, Dougherty JP, Shafritz DA. Repopulation of rat liver by fetal hepatoblasts and adult hepatocytes transduced ex vivo with lentiviral vectors. Hepatology 37:994–1005;2003.

    Article  PubMed  Google Scholar 

  96. Olsen JC. Gene transfer vectors derived from equine infections anemia virus. Gene Ther 5:1481–1487;1998.

    Article  PubMed  Google Scholar 

  97. Olsen JC. EIAV, CAEV and other lentivirus vector systems. Somat Cell Mol Genet 26:131–145;2001.

    Article  PubMed  Google Scholar 

  98. O'Rourke JP, Hiraragi H, Urban K, Patel M, Olsen JC, Bunnell BA. Analysis of gene transfer and expression in skeletal muscle using enhanced EIAV lentivirus vectors. Mol Ther 7:632–639;2003.

    Article  PubMed  Google Scholar 

  99. Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R. In vitro evidence for a long range pseudoknot in the 5′-untranslated and matrix coding regions of HIV-1 genomic RNA. J Biol Chem 277:5995–6004;2002.

    Article  PubMed  Google Scholar 

  100. Palfi S, Leventhal L, Chu Y, Ma SY, Emborg M, Bakay R, Deglon N, Hantraye P, Aebischer P, Kordower JH. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22:4942–4954;2002.

    PubMed  Google Scholar 

  101. Pappalardo L, Kerwood DJ, Pelczer I, Borer PN. Three-dimensional folding of an RNA hairpin required for packaging HIV-1. J Mol Biol 282:801–818;1998.

    Article  PubMed  Google Scholar 

  102. Park F, Ohashi K, Chiu W, Naldini L, Kay MA. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat Genet 24:49–52;2000.

    Article  PubMed  Google Scholar 

  103. Parolin C, Dorfman T, Palu G, Gottlinger H, Sodroski J. Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J Virol 68:3888–3895;1994.

    PubMed  Google Scholar 

  104. Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, Russell SJ. Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther 8:1456–1463;2001.

    Article  PubMed  Google Scholar 

  105. Poeschla E, Gilbert J, Li X, Huang S, Ho A, Wong-Stall F. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J Virol 72:6527–6536;1998.

    PubMed  Google Scholar 

  106. Poon DT, Chertova EN, Ott DE. Human immunodeficiency virus type 1 preferentially encapsidates genomic RNAs that encode Pr55(Gag): Functional linkage between translation and RNA packaging. Virology 293:368–378;2002.

    Article  PubMed  Google Scholar 

  107. Quinonez R, Sutton RE. Lentiviral vectors for gene delivery into cells. DNA Cell Biol 21:937–951;2002.

    Article  PubMed  Google Scholar 

  108. Rebolledo MA, Drogstad P, Chen FH, Shannon KM, Klitzner TS. Infection of human fetal cardiac myocytes by a human immunodeficiency virus-1-derived vector. Circ Res 83:738–742;1998.

    PubMed  Google Scholar 

  109. Rizvi TA, Panganiban AT. Propagation of SIV vectors by genetic complementation with a heterologous env gene. AIDS Res Hum Retroviruses 8:89–95;1992.

    PubMed  Google Scholar 

  110. Ruitenberg MJ, Plant GW, Christensen CL, Blits B, Niclou SP, Harvey AR, Boer GJ, Verhaagen J. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord. Gene Ther 9:135–146;2002.

    Article  PubMed  Google Scholar 

  111. Sadaie MR, Zamani M, Whang S, Sistron N, Arya SK. Towards developing HIV-2 lentivirus-based retroviral vectors for gene therapy: Dual gene expression in the context of HIV-2 LTR and Tat. J Med Virol 54:118–128;1998.

    Article  PubMed  Google Scholar 

  112. Scherr M, Battmer K, Eder M, Schule S, Hohenberg H, Ganser A, Grez M, Blomer U. Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther 9:1708–1714;2002.

    Article  PubMed  Google Scholar 

  113. Schnell T, Foley P, Wirth M, Munch J, Uberla K. Development of self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11:439–447;2000.

    Article  PubMed  Google Scholar 

  114. Schonely K, Afable C, Slepushkin V, Lu X, Andre K, Boehmer J, Bengtson K, Doub M, Cohen R, Berlinger D, Slepushkina T, Chen Z, Li Y, Binder G, Davis B, Humeau L, Dropulic B. QC release testing of an HIV-1 based lentiviral vector lot and transduced cellular product. Bioprocess J 2:39–47;2003.

    Google Scholar 

  115. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK, Sutton RE, Chen SY. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 1:171–179;2000.

    Article  PubMed  Google Scholar 

  116. Seppen J, Barry SC, Harder B, Osborne WR. Lentivirus administration to rat muscle provides efficient sustained expression of erythropoietin. Blood 98:594–596;2001.

    Article  PubMed  Google Scholar 

  117. Sparacio S, Pfeiffer T, Schaal H, Bosch V. Generation of a flexible cell line with regulatable, high-level expression of HIV Gag/Pol particles capable of packaging HIV-derived vectors. Mol Ther 3:602–612;2001.

    Article  PubMed  Google Scholar 

  118. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9:493–501;2003.

    Article  PubMed  Google Scholar 

  119. Stitz J, Muhlebach MD, Blomer U, Scherr M, Selbert M, Wehner P, Steidl S, Schmitt I, Konig R, Schweizer M, Cichutek K. A novel lentivirus vector derived from apathogenic simian immunodeficiency virus. Virology 291:191–197;2001.

    Article  PubMed  Google Scholar 

  120. Strauss J, Strauss E. Viruses and Human Disease. San Diego, Academic Press, chapt 9, 347–366;2002.

    Google Scholar 

  121. Swanstrom R, Wills JW. Synthesis, assembly and processing of viral protein. In: Coffin JM, Hughes SH, Varmus HE, eds. Retroviruses. Cold Spring Harbor, Cold Spring Harbor Press, 263–334;1997.

    Google Scholar 

  122. Takahashi K, Luo T, Saishin Y, Sung J, Hackett S, Brazzell RK, Kaleko M, Campochiaro PA. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum Gene Ther 13:1305–1316;2002.

    Article  PubMed  Google Scholar 

  123. Takahashi M, Miyoshi H, Verma IM, Gage FH. Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73:7812–7816;1999.

    PubMed  Google Scholar 

  124. Totsugawa T, Kobayashi N, Maruyama M, Kosaka Y, Okitsu T, Arata T, Sakaguchi M, Ueda T, Kurabayashi Y, Tanaka N. Lentiviral vector: A useful tool for transduction of human liver endothelial cells. ASAIO J 49:635–640;2003.

    Article  PubMed  Google Scholar 

  125. Trono D. Lentiviral Vectors. In: Lentiviral Vectors (Current Topics in Microbiology and Immunology). Heidelberg, Springer, 2001.

    Google Scholar 

  126. Van Maele B, De Rijck J, De Clercq E, Debyser Z. Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. J Virol 77:4685–4694;2003.

    Article  PubMed  Google Scholar 

  127. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM. Seventh ICTV report. In: Seventh ICTV Report. San Diego, Academic Press, 2000.

    Google Scholar 

  128. Vanden Haesevelde MM, Peeters M, Jannes G, Janssens W, van der Groen G, Sharp PM, Saman E. Sequence analysis of a highly divergent HIV-1-related lentivirus isolated from a wild captured chimpanzee. Virology 221:346–350;1996.

    Article  PubMed  Google Scholar 

  129. VandenDriessche T, Collen D, Chuah MK. Gene therapy for the hemophilias. J Thromb Haemost 1:1550–1558;2003.

    Article  PubMed  Google Scholar 

  130. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z, Collen D, Chuah MK. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 100:813–822;2002.

    Article  PubMed  Google Scholar 

  131. Varmus H, Swanstrom R. Replication of retroviruses. In: Weiss R, Teich N, Varmus H, Coffin J, eds. RNA Tumour Viruses: Molecular Biology of Tumor Viruses. New York, Cold Spring Harbor Laboratory, 369–512;1984.

    Google Scholar 

  132. Vigna E, Naldini L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med 2:308–316;2000.

    Article  PubMed  Google Scholar 

  133. Wang G, Slepushkin V, Zabner J, Keshavjee S, Johnston JC, Sauter SL, Jolly DJ, Dubensky TW Jr, Davidson BL, McCray PB Jr. Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect. J Clin Invest 104:R55-R62;1999.

    PubMed  Google Scholar 

  134. Watson DJ, Kobinger GP, Passini MA, Wilson JM, Wolfe JH. Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther 5:528–537;2002.

    Article  PubMed  Google Scholar 

  135. Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751;2003.

    Article  PubMed  Google Scholar 

  136. Xiao W, Chirmule N, Berta SC, McCullough B, Gao G, Wilson JM. Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003;1999.

    PubMed  Google Scholar 

  137. Zahler MH, Irani A, Malhi H, Reutens AT, Albanese C, Bouzahzah B, Joyce D, Gupta S, Pestell RG. The application of a lentiviral vector for gene transfer in fetal human hepatocytes. J Gene Med 2:186–193;2000.

    Article  PubMed  Google Scholar 

  138. Zeffman A, Hassard S, Varani G, Lever AML. The major HIV-1 packaging signal is an extended bulged stem loop whose structure is altered on interaction with the Gag polyprotein. J Mol Biol 297:877–893;2000.

    Article  PubMed  Google Scholar 

  139. Zennou V, Serguera C, Sarkis C, Colin P, Perret E, Mallet J, Charneau P. The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nat Biotechnol 19:446–450;2001.

    Article  PubMed  Google Scholar 

  140. Zhao C, Strappe PM, Lever AM, Franklin RJ. Lentiviral vectors for gene delivery to normal and demyelinated white matter. Glia 42:59–67;2003.

    Article  PubMed  Google Scholar 

  141. Zhao J, Pettigrew GJ, Thomas J, Vandenberg JI, Delriviere L, Bolton EM, Carmichael A, Martin JL, Marber MS, Lever AML. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic Res Cardiol 97:348–358;2002.

    Article  PubMed  Google Scholar 

  142. Zufferey R, Donello JE, Trono D, Hope TJ. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892;1999.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lever, A.M.L., Strappe, P.M. & Zhao, J. Lentiviral vectors. J Biomed Sci 11, 439–449 (2004). https://doi.org/10.1007/BF02256092

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256092

Key Words

Navigation