Skip to main content

Advertisement

Log in

Types of “H2O” in human enamel and in precipitated apatites

  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Summary

Types of “H2O” in human enamel and in precipitated apatites are characterized using X-ray diffraction, infrared (IR) absorption spectroscopic and thermogravimetric analyses. Changes in lattice parameters (principally in the α-axis dimensions) and in the character of the IR absorption bands are correlated with weight losses at pyrolysis temperatures of 100° to 400°C and with effect of rehydration and reignition of previously ignited samples.

This study demonstrated that the loss of “H2O” below 200°C is reversible and causes no significant change in the lattice parameter of these apatites, whereas loss of “H2O” between 200° and 400°C is irreversible and causes a contraction in the α-axis dimension. It is proposed that two general types of “H2O” are present in these apatites: (a)adsorbed H 2O—characterized by reversibility, thermal instability below 200°C, and lack of effect on lattice parameters; and (b)lattice H 2O—characterized by irreversibility, thermal instability between 200 and 400°C, and induction of expansion in the α-axis dimensions of human enamel and precipitated apatites. Lattice H2O is assumed to be due to H2O-for-OH and/or HPO4-for-PO4 substitutions in these apatites. Loss of adsorbed H2O caused sharpening of the OH absorption bands in the spectra of these apatites. Loss of lattice H2O caused the appearance of P−O−P absorption bands (due to the presence of P2O7 4− group) in precipitated apatites containing small amounts of CO3 2−.

The observed larger α-axis of human enamel apatite, i.e., 9.445±0.003A, compared to that of the mineral or synthetic (prepared at 1000°C) OH-apatite, i.e., 9.442A, may be attributed to the presence of lattice H2O, Cl-for-OH, and concerted substitutions of larger cations (e.g., Sr, Ba, Pb, K) for Ca in this apatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlstroem, D., Glas, J. E., Angmar, B.: Studies on the ultrastructure of dental enamel. V. The state of water in human enamel. J. Ultrastruc. Res.8:24–33, 1963

    Google Scholar 

  2. Casciani, F. S.: Identification of hydrate water in enamel, dentine, cementum and bone. In R. W. Fearnhead and M. V. M. Stack (eds.): Tooth Enamel II, pp. 14–23. John Wright, Bristol, 1971

    Google Scholar 

  3. Dibdin, G. H.: The stability of water in human dental enamel. Studies by proton nuclear magnetic resonance, Arch. Oral Biol.17:433–439, 1972

    PubMed  Google Scholar 

  4. Myers, H. M.: Trapped water in dental enamel, Nature206:713–715, 1965

    PubMed  Google Scholar 

  5. Myers, H. M.: Wide-line nuclear magnetic resonance (NMR) studies on enamel, Exp. Cell Res.38:686–691, 1965

    PubMed  Google Scholar 

  6. Little, M. F., Casciani, F. S.: The nature of water in sound human enamel. A preliminary study. Arch. Oral Biol.11:565–571, 1966

    PubMed  Google Scholar 

  7. Davidson, C. L., Arends, J.: Thermal analysis studies on sound and artificial decalcified tooth enamel, Min. Tissue Res. Commun. 2: 1976

  8. Brauer, G. H., Termini, D. J., Burns, C. L.: Characterization of components of dental materials and components of tooth structure by differential thermal analysis. J. Dent. Res.49:100–110, 1970

    PubMed  Google Scholar 

  9. Corcia, J. T., Moody, W. E.: Thermal analysis of human dental enamel, J. Dent. Res.53:571–579, 1974

    Google Scholar 

  10. Holager, J.: Thermogravimetric examination of enamel and dentine, J. Dent. Res.69:546–549, 1970

    Google Scholar 

  11. Sedlak, J. M., Beebe, R. A.: Temperature programmed dehydration of amorphous calcium phosphates, J. Coll. Interf. Sci.47:501–502, 1965

    Google Scholar 

  12. LeGeros, R. Z., LeGeros, J. P., Trautz, O. R., Klein, E.: Pyrolysis of biological apatites, Int. Assoc. Dent. Res. (IADR) Meeting, Abstract no. 171, 1970

  13. Young, R. A.: Biological apatites vs. hydroxyapatite at the atomic level. Clin. Orthop.113:249–259, 1975

    PubMed  Google Scholar 

  14. LeGeros, R. Z.: Crystallographic studies of the carbonate substitution in the apatite structure, Ph.D. thesis, New York University, New York, 1967

    Google Scholar 

  15. LeGeros, R. Z.: The unit-cell dimensions of human enamel apatite: effect of chloride incorporation, Arch. Oral Biol.20:63–71, 1971

    Google Scholar 

  16. Vignoles, C.: Contribution a l'etude de l'influence des ions alcalins sur la carbonatation dans les sites de type X des apatites phosphocalciques, Ph.D. thesis, Universite Paul Sabatier, 1973

  17. LeGeros, R. Z., LeGeros, J. P., Shirra, W. P., Trauts, O. R.: Conversion of CaHPO4 to apatites; effect of carbonate on the crystallinity and the morphology of apatites. Adv. X-ray Anal.14:57–62, 1971

    Google Scholar 

  18. Zapanta-LeGeros, R.: Effect of carbonate on the lattice parameters of apatite, Nature206:403–405, 1965

    PubMed  Google Scholar 

  19. Burnett, G. W., Zenewitz, J.: Studies on the composition of teeth. VII. The moisture content of calcified tooth tissues, J. Dent. Res.37:581–589, 1958

    PubMed  Google Scholar 

  20. Angell, C. L., Shaeffer, P. C.: Infrared spectroscopic investigations of zeolites and adsorbed molecules, I. Structural OH groups, J. Phys. Chem.69:3463–3470, 1965

    Google Scholar 

  21. Hanser, E. A., LeBean, D. S., Perea, P.: The surface structure and composition of colloidal siliceous matter, j. Phys. Coll. Chem.55:68–79, 1951

    Google Scholar 

  22. Arends, J., Davidson, C. L.: HPO4 2− content in enamel and artificial carious lesions, Calcif. Tissue Res.18:65–79, 1975

    PubMed  Google Scholar 

  23. Berry, E. E.: The structure and composition of some calcium-deficient apatites, J. Inorg. Nucl. Chem.29:317–327, 1967

    Google Scholar 

  24. Corbridge, D. E. C., Lowe, E. J.: Infrared spectra of inorganic phosphate compounds, J. Chem. Soc. 493–502, 1954

  25. Herzberg, G.: Infrared and Raman Spectra of Polyatomic Molecules, Vol. 2. D. van Nostrand Co., New York, 1945

    Google Scholar 

  26. Joris, S. J., Amberg, C. H.: The nature of deficiency in nonstoichiometric hydroxyapatites. II. Spectroscopic studies of calcium and strontium hydroxyapatites, J. Phys. Chem.75:3172–3178, 1971

    Google Scholar 

  27. Gee, A. J., Davidson, C. L.: Mass spectrometry of enamel components released between R. T. and 450°C, J. Dent. Res.56:A49, 1977

    Google Scholar 

  28. LeGeros, R. Z.: Apatites from aqueous and non-aqueous systems: relation to biological apatites. Proc. First International Conference on Phosphorus Compounds, pp. 347–361. IMPHOS, Rabat, 1977

    Google Scholar 

  29. McConnell, D.: Deficiency of phosphate ions in apatite, Naturwissenschaften183:1–3, 1965

    Google Scholar 

  30. Simpson, D.: Carbonate in hydroxyapatite, Science147:501–502, 1965

    Google Scholar 

  31. Elliott, J. C., Mackie, P. E.: Monoclinic hydroxyapatite. In: Physicochimie et Cristallographie des Apatites de'interet Biologique, pp. 69–76. CNRS no. 230, Paris, 1975

  32. Brown, W. E., Smith, J. P., Lehr, J. R., Frazier, A. W.: Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature196:1050–1055, 1962

    Google Scholar 

  33. Ingram, G.: The role of carbonate in dental mineral, Caries Res.7:217–221, 1973

    PubMed  Google Scholar 

  34. Trautz, O. R.: Crystalline organization of dental mineral. In A. E. D. Miles (ed): Structural and Chemical Organization of Teeth, Vol. 2, pp. 165–200. Academic Press, New York, 1967

    Google Scholar 

  35. Heughbaert, J. C.: Contribution a l'evolution des orthophosphates de calcium non-cristalline en apatite, Thes d'Etat, Institut National Polytechnique de Toulouse, 1977

  36. Bonel, G.: De la carbonation des apatites, Ann. Chim.7:124–144, 1972

    Google Scholar 

  37. Bonel, G., Montel, G.: Sur une nouvell apatite carbonatee synthetique, C.R. Acad. Sci. [D] (Paris)258:923–926, 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeGeros, R.Z., Bonel, G. & Legros, R. Types of “H2O” in human enamel and in precipitated apatites. Calc. Tis Res. 26, 111–118 (1978). https://doi.org/10.1007/BF02013245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02013245

Key words

Navigation