Skip to main content
Log in

Thiamine in excitable tissues: Reflections on a non-cofactor role

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

DIDS:

4,4′-diisothiocyanostilbene-2,2′-disulfonic acid

HPLC:

high-performance liquid chromatography

KGDH:

α-ketoglutarate dehydrogenase

PDH:

pyruvate dehydrogenase

TDP:

thiamine diphosphate

TDPase:

thiamine diphosphatase

TMP:

thiamine monophosphate

TMPase:

thiamine monophosphatase

TTP:

thiamine triphosphate

TTPase:

thiamine triphosphatase

TTX:

tetrodotoxin

VDAC:

voltage-dependent anion channel

References

  • Adams, P.R., and Brown, D.A. (1975). Actions of γ-aminobutyric acid on sympathetic ganglion cells.J. Physiol. 250:85–120.

    Google Scholar 

  • Aikawa, H., Watanabe, I.S., Furuse, T., Iwasaki, Y., Satoyoshi, E., Sumi, T.et al. (1984). Low energy levels in thiamine deficient encephalopathy.J. Neuropathol. Exp. Neurol. 43:276–287.

    Google Scholar 

  • Armett, C.J., and Cooper, J.R. (1965). The role of thiamine in nervous tissue: effect of antimetabolites of the vitamin on conduction in mammalian nonmyelinated nerve fibers.J. Pharmacol. Exp. Ther. 148:137–143.

    Google Scholar 

  • Barchi, R.L., and Braun, P.E. (1971). Thiamine in neural membranes. A developmental approach.Brain Res. 35:622–624.

    Google Scholar 

  • Barchi, R.L., and Braun, P.E. (1972a). A membrane-associated thiamine triphosphatase from rat brain. Properties of the enzyme.J. Biol. Chem. 247:7668–7673.

    Google Scholar 

  • Barchi, R.L., and Braun, P.E. (1972b). Thiamine in neural membranes. Enzymatic hydrolysis of thiamine diphosphate.J. Neurochem. 19:1039–1048.

    Google Scholar 

  • Barchi, R.L., and Viale, R.O. (1976). Membrane-associated thiamine triphosphatase. II. Activation by divalent cations.J. Biol. Chem. 251: 193–197.

    Google Scholar 

  • Barchi, R.L. (1976). Membrane thiamine triphosphatase from rat brain: inhibition by ATP and ADP.J. Neurochem. 26:715–720.

    Google Scholar 

  • Barile, M., Passarella, S., and Quagliariello, E. (1990). Thiamine pyrophosphate uptake into isolated rat liver mitochondria.Arch. Biochem. Biophys. 280:352–357.

    Google Scholar 

  • Barker J.L., and Ransom, B.R. (1978). Amino acid pharmacology of mammalian central neurons grown in tissue culture.J. Physiol. 280:331–354.

    Google Scholar 

  • Bender, D.A. (1984). B vitamins in the nervous system.Neurochem. Internat. 6:297–321.

    Google Scholar 

  • Berman, K., Fishman, R.A. (1975). Thiamine phosphate metabolism and possible coenzyme-independent functions of thiamine in brain.J. Neurochem. 24:457–465.

    Google Scholar 

  • Bettendorff, L. (1991). Application of high-performance liquid chromatography to the study of thiamine metabolism and in particular thiamine triphosphatase.J. Chromatogr. 566:397–408.

    Google Scholar 

  • Bettendorff, L. (1994). The compartmentation of phosphorylated thiamine derivatives in cultured neuroblastoma cell.Biochim. Biophys. Acta 1222:7–14.

    Google Scholar 

  • Bettendorff, L., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1986). Determination of thiamine and its phosphate esters in human blood serum at femtomole levels.J. Chromatogr. 382:297–302.

    Google Scholar 

  • Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1987). Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus.J. Neurochem. 49:495–502.

    Google Scholar 

  • Bettendorff, L., Wins, P., and Schoffeniels, E. (1988). Thiamine triphosphatase from Electrophorus electric organ is anion dependent and irreversibly inhibited by 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid.Biochem. Biophys. Res. Commun. 154:942–947.

    Google Scholar 

  • Bettendorff, L., Grandfils, C., Wins, P., and Schoffeniels, E. (1989a). Thiamine triphosphatase in the membranes of the main electric organ of Electrophorus electricus: substrate-enzyme interactions.J. Neurochem. 53:738–746.

    Google Scholar 

  • Bettendorff, L., Schoffeniels, E., Naquet, R., Silva-Barrat, C., Riche, D., and Ménini, C. (1989b). Phosphorylated thiamine derivatives and cortical activity in the baboon Papio papio: Effect of intermittent light stimulation.J. Neurochem. 53:80–87.

    Google Scholar 

  • Bettendorff, L., Weekers, L., Wins, P., and Schoffeniels, (1990a). Injection of sulbutiamine induces an increase in thiamine triphosphate in rat tissues.Biochem. Pharmacol. 40:2557–2560.

    Google Scholar 

  • Bettendorff, L., Wins, P., and Schoffeniels, E. (1990b). Regulation of ion uptake in membrane vesicles from rat brain by thiamine compounds.Biochem. Biophys. Res. Commun. 171:1137–1144.

    Google Scholar 

  • Bettendorff, L., Longrée, I., Wins, P., and Schoffeniels, E. (1991a). Solubilization of thiamine triphosphatase from the electric organ of Electrophorus electricus.Biochim. Biophys. Acta 1073:69–76.

    Google Scholar 

  • Bettendorff, L., Peeters, M., Jouan, C., Wins, P., and Schoffeniels, E. (1991). Determination of thiamin and its phosphate esters in cultured neurons and astrocytes using an ion-pair reversed phase high-performance liquid chromatographic method.Anal. Biochem. 198:52–59.

    Google Scholar 

  • Bettendorff, L., Hennuy, B., Wins, P., and Schoffeniels, E. (1993a). Thiamine and derivatives as modulators of rat brain chloride channels.Neurosci. 52:1009–1017.

    Google Scholar 

  • Bettendorff, L., Kolb, H.-A., and Schoffeniels, E. (1993b). Thiamine triphosphate activates an anion channel of large unit conductance in neuroblastoma cells.J. Membr. Biol. 136:281–288.

    Google Scholar 

  • Bettendorff, L., Peeters, M., Wins, P., and Schoffeniels, E. (1993c). Metabolism of thiamine triphosphate in rat brain: Correlation with chloride permeability.J. Neurochem. 60:423–434.

    Google Scholar 

  • Bettendorff, L., and Wins, P. (1994). Mechanism of thiamine transport in neuroblastoma cells. Inhibition of a high affinity carrier by sodium channel activators and dependence of thiamine uptake on membrane potential and intracellular ATP.J. Biol. Chem. 269:14379–14385.

    Google Scholar 

  • Bettendorff, L., Hennuy, B., De Clerck, A., and Wins, P. (1994a). Chloride permeability of rat brain membrane vesicles correlates with thiamine triphosphate content.Brain Res. (in press).

  • Bettendorff, L., Wins, P., and Lesourd, M. (1994b). Subcellular localization and compartmentation of thiamine derivatives in rat brain.Biochim. Biophys. Acta 1222:1–6.

    Google Scholar 

  • Blass, J.P., Cederbaum, S.D., and Dunn, H.G. (1976). Biochemical abnormalities in Leigh's disease.Lancet 1:1237–1238.

    Google Scholar 

  • Blass, J.P., Piacentini, S., Boldizsar, E., and Baker, A. (1982). Kinetic studies of mouse brain transketolase.J. Neurochem. 39:729–733.

    Google Scholar 

  • Blatz, A.L., and Magleby, K.L. (1983). Single voltage-dependent chloride-sensitive channels of large conductance in cultured rat muscle.Biophys. J. 43:237–241.

    Google Scholar 

  • Bontemps, J., Philippe, P., Bettendorff, L., Lombet, J., Dandrifosse, G., and Schoffeniels, E. (1984). Determination of thiamine and thiamine phosphates in excitable tissues as thiochrome derivatives by reversed-phase high performance liquid chromatography on octadecyl)silica.J. Chromatogr. 307:283–294.

    Google Scholar 

  • Brown, R.D. (1982). Thiamin as a catalyst of chemiosmotic energy transductions.Ann. NY Acad. Sci. 378:442–448.

    Google Scholar 

  • Brunnekreeft, J.W.I., Eidhof, H., and Gerrits, J. (1989). Optimized determination of thiochrome derivatives of thiamine and thiamine phosphates in whole blood by reversed-phase liquid chromatography with precolumn derivatization.J. Chromatogr. 491:89–96.

    Google Scholar 

  • Bureau, M.H., Khrestchatisky, M., Heeren, M.A., Zambrowicz, E.B., Kim, H., Grisar, T.M.et al. (1992). Isolation and cloning of a voltage-dependent anion channel-like Mr 36,000 polypeptide from mammalian brain.J. Biol. Chem. 267:8679–8684.

    Google Scholar 

  • Butterworth, R.F. (1982). Neurotransmitter function in thiamine-deficiency encephalopathy.Neurochem. Internat. 4:449–464.

    Google Scholar 

  • Butterworth, R.F. (1993). Pathophysiological mechanisms responsible for the reversible (thiamine-responsive) and irreversible (thiamine non-responsive) neurological symptoms of Wernicke's encephalopathy.Drug. Alcohol. Rev. 12:315–322.

    Google Scholar 

  • Castellano, B., Gonzales, B., and Palacios, G. (1989). Cytochemical demonstration of TDPase in myelinated fibers in the central and peripheral nervous system of the rat.Brain Res. 492:203–210.

    Google Scholar 

  • Catterall, W.A. (1992). Cellular and molecular biology of voltage-gated sodium channels.Physiol. Rev. 72:S15-S48.

    Google Scholar 

  • Claus, D., Eggers, R., Warecka, K., and Neundörfer, B. (1985). Thiamine deficiency and nervous system function disturbances.Eur. Arch. Psychiatr. Neurol. Sci. 234: 390–394.

    Google Scholar 

  • Colombini, M.J. (1989). Voltage gating in the mitochondrial channel, VDAC.J. Membr. Biol. 111:103–108.

    Google Scholar 

  • Cooper, J.R., Itokawa, Y., and Pincus, J.H. (1969). Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy.Science 164:74–75.

    Google Scholar 

  • Cooper, J.R., and Pincus, J.H. (1979). The role of thiamine in the nervous tissue.Neurochem. Res. 4:223–239.

    Google Scholar 

  • Cooper, J.R., Roth, R.H., and Kini, M.M. (1963). Biochemical and physiological function of thiamine in nervous tissue.Nature 199:609–610.

    Google Scholar 

  • De Caro, L.G. Jr. (1962). Vitesse de conduction et contenu en thiamine (cocarboxylase) du nerf.Electroencephalogr. Clin. Neurophysiol. 14 (suppl. 22):26–29.

    Google Scholar 

  • De Caro, L., Rindi, G., and de Giuseppe, L. (1961). Contents in rat tissue of thiamine and its phosphate during dietary thiamine deficiency.Int. Rev. Vit. Res. 31:333–340.

    Google Scholar 

  • Dermietzel, R., Hwang, T.-K., Buettner, R., Hofer, A., Dotzler, E., Kremer, M.et al. (1994). Cloning andin situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes.Proc. Natl. Acad. Sci. USA 91:499–503.

    Google Scholar 

  • DeVivo, D.C., Haymond, M.W., Obert, K.A., Nelson, J.S., Pagliare, A.S. (1979). Defective activation of the pyruvate dehydrogenase complex in subacute necrotizing encephalopathy (Leigh disease).Ann. Neurol. 6:483–494.

    Google Scholar 

  • Doerge, D.R., McNamee, M.G., and Ingraham, L.L. (1982). Some neurochemical properties of thiamin.Ann. NY Acad. Sci. 378:422–434.

    Google Scholar 

  • Dreyfus, P.M. (1959). The quantitative histochemical distribution of thiamine in normal rat brain.J. Neurochem. 4:183–190.

    Google Scholar 

  • Dreyfus, P.M. (1961). The quantitative histochemical distribution of thiamine in deficient rat brain.J. Neurochem. 8:139–145.

    Google Scholar 

  • Eckert, T., and Möbus, W. (1964). Über eine ATP:Thiamindiphosphat-Phosphotranferase Aktivität im Nervengewebe.Z. Physiol. Chem. 338:286–288.

    Google Scholar 

  • Eder, L., and Dunant, Y. (1980). Thiamine and cholinergic transmission in the electric organ of Torpedo I. Cellular localization and functional changes of thiamine and thiamine phosphate esters.J. Neurochem. 35:1278–1286.

    Google Scholar 

  • Eder, L., Hirt, L., and Dunant, Y. (1976). Possible involvement of thiamine in acetylcholine release.Nature 264:186–188.

    Google Scholar 

  • Eder, L., Dunant, Y., and Loctin, F. (1980). Thiamine and cholinergic transmission in the electric organ of Torpedo II. Effects of exogenous thiamine and analogues on acetylcholine release.J. Neurochem. 35:1287–1296.

    Google Scholar 

  • Egi, Y., Koyama, S., Shikata, H., Yamada, K., and Kawasaki, T. (1986). Content of thiamin phosphate esters in mammalian tissues.-An extremely high concentration of thiamine triphosphate in pig skeletal muscle.Biochem. Int. 12:385–390.

    Google Scholar 

  • Eichenbaum, J.W., and Cooper, J.R. (1971). Restoration by thiamine of the action potential in ultraviolet irradiated nerves.Brain Res. 32:258–260.

    Google Scholar 

  • Eijkman, C. (1897). Eine Beriberiähnliche Krankheit der Hühner.Virchows Arch. Pathol. Anat. 148:523.

    Google Scholar 

  • Enomoto, K.-I., and Edwards, C. (1985). Thiamine blockade of neuromuscular transmission.Brain Res. 358:316–323.

    Google Scholar 

  • Esquibel, M.A., Alonso, I., Meyer, H., and Oliveira Castro, G., and de Chagas, C. (1971). Quelques aspects de l'histogenèse et de l'ontogenèse des organes electriques chez l'Electrophorus electricus.L.C.R. Acad. Sci. (Paris) 273:196–199.

    Google Scholar 

  • Falke, L.C., and Misler, S. (1989). Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells.Proc. Nat. Acad. Sci. USA 86:3919–3923.

    Google Scholar 

  • Filippov, P.P., Shestakowa, I.K., Tikhomirova, N.K., and Kochetov, G.A. (1979). Properties of pig liver transketolase.Biokhimiya 44:521–528.

    Google Scholar 

  • Fournier, J. (1988). Thiamine. Propriétés acido-basiques (partie 1).Bull. Soc. Chim. France 5:854–861.

    Google Scholar 

  • Fox, J.M. (1972). Does thiamine restore excitability of peripheral nerves blocked by ultraviolet radiation.Brain Res. 44:271–272.

    Google Scholar 

  • Fox, J.M., and Duppel, W. (1975). The action of thiamine and its di-and triphosphates on the slow exponential decline of the ionic currents in the node of Ranvier.Brain Res. 89:287–302.

    Google Scholar 

  • Funk, C. (1911). On the chemical nature of the substance which cures polyneuritis in birds induced by a diet of polished rice.J. Physiol. (London) 43:395–400.

    Google Scholar 

  • Gaitonde, M.K., and Evans, G.M. (1983). Metabolism of thiamin in rat brainin vivo.Biochem. Soc. Trans. 11:695–696.

    Google Scholar 

  • Gaitonde, M.K., Evison, E., and Evans, G.M. (1983). The rate of utilization of glucose via hexosemonophosphate shunt in brain.J. Neurochem. 41:1253–1260.

    Google Scholar 

  • Gale, J.M., and Brosemer, R.W. (1984). Effect of pyrithiamine treatment on potassium ion fluxes in rat cortical slices.Biochim. Biophys. Acta 773:125–131.

    Google Scholar 

  • Galzigna, L. (1969). The synaptolytic effect of thiamine related to its interaction with neurotransmitter.Biochem. Pharmacol. 18:2485–2493.

    Google Scholar 

  • Gibson, G.E., Ksiezak-Reding, H., Sheu, K.R., Mykytyn, V., and Blass, J.P. (1984). Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal.Neurochem. Res. 9:803–814.

    Google Scholar 

  • Gibson, G., Nielsen, P., Mykytyn, V. Carlson, K., and Blass, J. (1989). Regionally selective alterations in enzymatic activities and metabolic fluxes during thiamine deficiency.Neurochem. Res. 14:17–24.

    Google Scholar 

  • Goldberg, D.J., Begenisich, T.B., and Cooper, J.R. (1975). Effects of thiamine antagonists on nerve conduction. II. Voltage clamp experiments with antimetabolites.J. Neurobiol. 6:453–462.

    Google Scholar 

  • Goldberg, D.J., and Cooper, J.R. (1975). Effects of thiamine antagonists on nerve conduction. I. Actions of antimetabolites and fern extract on propagated action potentials.J. Neurobiol. 6:435–452.

    Google Scholar 

  • Gounaris, A.D., and Schulman, M. (1980). Formation of a thiamine artifact during chromatography: a single column procedure for the separation of thiamine and the thiamine mono-, di-, and triphosphate esters.Anal. Biochem. 102:145–149.

    Google Scholar 

  • Gray, P.T.A., Bevan, S., and Ritchie, J.M. (1984). High conductance anion-selective channels in rat cultured Schwann cells.Proc. R. Soc. Lond. B 221:395–409.

    Google Scholar 

  • Greenwood, J., Love, E.R., and Pratt, O.E. (1982). Kinetics of thiamine transport across the blood-brain barrier in the rat.J. Physiol. 327:095–103.

    Google Scholar 

  • Greenwood, J., Luthert, P.J., and Pratt, O.E., and Lantos, P.L. (1986). Transport of thiamine across the blood-brain barrier of the rat in the absence of aerobic metabolism.Brain Res. 399:148–151.

    Google Scholar 

  • Greiling, H., and Kiesow, L. (1958). Zur Biochemie der Thiamintriphosphorsäure IV. Mitt.: Das Vorkommen von Thiamintriphosphat im tierischen Organismus.Z. Naturforschg. 13b:251–252.

    Google Scholar 

  • Gurtner, H.P. (1961). Aneurin und Nervenerregung Versuche mit32S-markiertem Aneurin und Aneurinantimetaboliten.Helv. Physiol. Acta Suppl.XI:1–47.

    Google Scholar 

  • Haas, R.H. (1988). Thiamine and the brain.Ann. Rev. Nutr. 8:483–515.

    Google Scholar 

  • Hakim A.M. (1984). The induction and reversibility of cerebral acidosis in thiamine deficiency.Ann. Neurol. 16:673–679.

    Google Scholar 

  • Hakim, A.M., and Pappius, H.M. (1983). Sequence of metabolic, clinical, and histological events in experimental thiamine deficiency.Ann. Neurol. 13:365–375.

    Google Scholar 

  • Hanover, J.A. (1992). The nuclear pore: at the crossroads.FASEB J. 6:2288–2295.

    Google Scholar 

  • Harris, R.A., and Allan, A.M. (1985). Functional coupling of γ-aminobutyric acid receptors to chloride channels in brain membranes.Science 228: 1108–1110.

    Google Scholar 

  • Hashitani, Y., and Cooper, J.R. (1972). The partial purification of thiamine triphosphatase from rat brain.J. Biol. Chem. 247:2117–2119.

    Google Scholar 

  • Hazell, A.S., Butterworth, R.F., and Hakim, A.M. (1993). Cerebral vulnerability is associated with selective increase in extracellular glutamate concentrations in experimental thiamine deficiency.J. Neurochem. 61:1155–1158.

    Google Scholar 

  • Herve, C., Beyne, P., and Delacoux, E. (1994). Determination of thiamine and its phosphate esters in human erythrocytes by high-performance liquid chromatography with isocratic elution.J. Chromatogr. B 653:217–220.

    Google Scholar 

  • Itokawa, Y., and Cooper, J.R. (1968). The enzymatic synthesis of triphosphothiamine.Biochim. Biophys. Acta 158:180–182.

    Google Scholar 

  • Itokawa, Y., and Cooper, J.R. (1969a). On a relationship between ion transport and thiamine in nervous tissue.Biochem. Pharmacol. 18:545–547.

    Google Scholar 

  • Itokawa, Y., and Cooper, J.R. (1969b). Thiamine release from nerve membranes by tetrodotoxin.Science 166:759–761.

    Google Scholar 

  • Itokawa Y., and Cooper J.R. (1970a). Ion movements and thiamine in nervous tissue - I. Intact nerve preparations.Biochem. Pharmacol. 19:985–992.

    Google Scholar 

  • Itokawa, Y., and Cooper, J.R. (1970b). Ion movements and thiamine - II. The release of the vitamin from membrane fragments.Biochim. Biophys. Acta 196:274–284.

    Google Scholar 

  • Itokawa, Y., Kimura, M., and Nishino, K. (1982). Thiamin-binding proteins.Ann. NY. Acad. Sci. 378: 327–336.

    Google Scholar 

  • Itokawa, Y., Schulz R.A., and Cooper J.R. (1972). Thiamine in nerve membranes.Biochim. Biophys. Acta 266:293–299.

    Google Scholar 

  • Iwata, H., Matsuda, T., and Tonomura, H. (1988). Improved high-performance liquid chromatographic determination of thiamine and its phosphate esters in animal tissues.J. Chromatogr. 450:317–323.

    Google Scholar 

  • Iwata, H., Yabushita, Y., Doi, T., and Matsuda, T. (1985). Synthesis of thiamine triphosphate in rat brain in vivo.Neurochem. Res. 10:779–787.

    Google Scholar 

  • Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux.Am. J. Physiol. 265:C1489-C1500.

    Google Scholar 

  • Jansen, B.C.P., and Donath, W.F. (1926). On the isolation of antiberiberi vitamin.Proc. Kon. Ned. Akad. Wet. 29:1390.

    Google Scholar 

  • Johnson, L.R., and Gubler, C.J. (1969). Studies on the physiological functions of thiamine III. The phosphorylation of thiamine in brain.Biochim. Biophys. Acta 156:85–96.

    Google Scholar 

  • Kawasaki, T. (1992). Vitamin B1: Thiamine. InModern Chromatographic of Analysis of Vitamins, pp 575 (De Leenheer, A.P., Lambert, W.E., Nelis, H.J., eds); Marcel Dekker, Inc, New York.

    Google Scholar 

  • Keynes, R.D. (1963). Chloride in the squid axon.J. Physiol. (London) 169:690–705.

    Google Scholar 

  • Kiessling, K.-H. (1953). Thiamine triphosphate in Baker's yeast.Nature 172:1187–1188.

    Google Scholar 

  • Kimelberg, H.K. (1981). Active accumulation and exchange transport of chloride in astroglial cells in culture.Biochim. Biophys. Acta 646:179–184.

    Google Scholar 

  • Kimura, M., Fujita, T., and Itokawa, Y. (1982). Liquid-chromatographic determination of the total thiamine content of blood.Clin. Chem. 28:29–31.

    Google Scholar 

  • Kimura, M., and Itokawa, J. (1985). Determination of thiamine and its phosphate esters in human and rat blood by high-performance liquid chromatography with post-column derivatization.J. Chromatogr. 332:181–188.

    Google Scholar 

  • Kirk, K., Ellory, J.C., and Young, J.D. (1992). Transport of organic substrates via a volume-activated channel.J. Biol. Chem. 267:23475–23478.

    Google Scholar 

  • Knyihar-Csillik, E., Bezzegh, A., Böti, S., and Csillik, B. (1986). Thiamine monophosphatase: a genuine marker for transganglionic regulation of primary sensory neurons.J. Histochem. Cytochem. 34:363–371.

    Google Scholar 

  • Koike, H., Wada, T., and Minakami, H. (1967). Quantitative separation of triphosphothiamine in biological materials and its formation from S35-thiamine in rat liver.J. Biochem. 62:492–494.

    Google Scholar 

  • Kolb, H.A., Brown, C.D.A., and Murer, H. (1985). Identification of a voltage-dependent anion channel in the apical membrane of a Cl—secretory epithelium (MDCK).Pflügers Arch. 403:262–265.

    Google Scholar 

  • Kunz, H.A. (1956). Über die Wirkung von Antimetaboliten des Aneurins auf die einzelne markhaltige Nervenfaser.Helv. Physiol. Acta 14:411–423.

    Google Scholar 

  • Laforenza, U., Mazzarello, P., Patrini, C., Poloni, M., Casadei, G.P., and Rindi, G. (1990a). Different distribution of thiaminpyrophosphatase activity in neuronal and glial cell enriched fractions from human and rat brain: an isoelectric focusing investigation.Bas. Appl. Histochem. 34:111–117.

    Google Scholar 

  • Laforenza, U., Patrini, C., Mazzarello, P., Poloni, M., and Rindi G. (1990b). Thiamine, thiamine phosphates and thiamine metabolizing enzymes in synaptosomes of rat brain.Bas. Appl. Histochem. 34:249–258.

    Google Scholar 

  • Laforenza, U., Patrini, C., and Rindi, G. (1988). Distribution of thiamine, thiamine phosphates, and thiamine metabolizing enzymes in neuronal and glial cell enriched fractions of rat brain.J. Neurochem. 51:730–735.

    Google Scholar 

  • Langlais, P.J., and Mair, R.G. (1990). Protective effects of the glutamate antagonist MK-801 on pyrithiamine-induced lesions and amino acid changes in rat brain.J. Neurosci. 10:1664–1674.

    Google Scholar 

  • Lohmann, K., and Schuster, P. (1937). Untersuchungen über die Cocarboxylase.Biochem. Z. 294:188.

    Google Scholar 

  • Makarchikevich, A.F., and Chernikevich, I.P. (1992). Purification and characterization of thiamine triphosphatase from bovine brain.Biochim. Biophys. Acta 1117:326–332.

    Google Scholar 

  • Mastrogiacomo, F., Bergeron, C., and Kish, S.J. (1993). Brain α-ketoglutarate dehydrogenase complex activity in Alzheimer's disease.J. Neurochem. 61:2007–2014.

    Google Scholar 

  • Matsuda, T., and Cooper, J.R. (1981). Thiamine as an integral component of brain synaptosomal membranes.Proc. Natl. Acad. Sci. USA 78:5886–5889.

    Google Scholar 

  • Matsuda, T., and Cooper, J.R. (1983). Inhibition of neuronal sodium and potassium ion activated adenosinetriphosphatase by pyrithiamine.Biochemistry 22:2209–2213.

    Google Scholar 

  • Matsuda, T., Iwata, H., and Cooper, J.R. (1984). Specific inactivation of a α(+) molecular form of (Na++K+)-ATPAse by pyrithiamin.J. Biol. Chem. 259:3858–3863.

    Google Scholar 

  • Matsuda, T., Iwata, H., and Cooper, J.R. (1985a). Involvement of sulfhydryl groups in the inhibition of brain (Na++K+)-ATPase by pyrithiamin.Biochim. Biophys. Acta 817:17–24.

    Google Scholar 

  • Matsuda, T., Yabushita, Y., Doi, T., and Iwata, H. (1985b). Regional distribution of thiamin pyrophosphokinase in rat brain.Experientia 41:924–925.

    Google Scholar 

  • Matsuda, T., Doi, T., Tonomura, H., Baba, A., and Iwata, H. (1989a). Postynatal development of thiamine metabolism in rat brain.J. Neurochem. 52:842–846.

    Google Scholar 

  • Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989b). Tissue difference in cellular localization of thiamine phosphate esters.Comp. Biochem. Physiol. 94B:405–409.

    Google Scholar 

  • Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989c). Difference in thiamine metabolism between extensor digitorum longus and soleus muscles.Comp. Biochem. Physiol. 94B:399–403.

    Google Scholar 

  • Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1991a). Postnatal development of thiamine metabolism in rat skeletal muscle.Int. J. Biochem. 23:203–206.

    Google Scholar 

  • Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1991b). Membrane-associated thiamine triphosphatase in rat skeletal muscle.Int. J. Biochem. 23:1111–1114.

    Google Scholar 

  • McCandless, D.W., and Schenker, S. (1968). Encephalopathy of thiamine deficiency: studies of intracerebral mechanisms.J. Clin. Invest. 47:2268–2280.

    Google Scholar 

  • McGill, J.M., Basuvappa, S., and Fitz, J.G. (1992). Characterization of high-conductance anion channels in rat bile duct epithelial cells.Am. J. Physiol. 262:G703-G710.

    Google Scholar 

  • McLane, J.A., Khan, T., and Held, I.R. (1987). Increased axonal transport in peripheral nerves of thiamine-deficient rats.Exp. Neurol. 95:482–491.

    Google Scholar 

  • Minz, B. (1938). Sur la libération de la vitamine B1 par le tronc isolé du nerf pneumogastrique soumis à l'excitation électrique.C.R. Soc. Biol. (Paris) 127:1251–1253.

    Google Scholar 

  • Miyoshi, K., Egi, Y., Shioda, T., and Kawasaki, T. (1990). Evidence for in vivo synthesis of thiamine triphosphate by cytosolic adenylate kinase in chicken skeletal muscle.J. Biochem. 108:267–270.

    Google Scholar 

  • Murphy, J.V. (1976). Neurochemical changes in Leigh's disease.J. Nutr. Sci. Vitaminol. 22 (Suppl.):69–73.

    Google Scholar 

  • Nachmansohn, D., and Steinbach, H.B. (1942). Localization of enzymes in nerves I. Succinic dehydrogenase and vitamin B1.J. Neurophysiol. 5: 109–120.

    Google Scholar 

  • Nishino, K., Itokawa, Y., Nishino, N., Piros, K., and Cooper, J.R. (1983). Enzyme system involved in the synthesis of thiamine triphosphate. I. Purification and characterization of protein-bound thiamine diphosphate: ATP phosphoryltransferase.J. Biol. Chem. 258:11871–11878.

    Google Scholar 

  • Novikoff, A.B. and Goldfischer, S. (1961). Nucleosidediphosphatase activity in the Golgi apparatus and its usefulness for cytological studies.Proc. Natl. Acad. Sci. USA 47:802–810.

    Google Scholar 

  • Ogawa, K., and Sakai, M. (1982). Recent findings on ultracytochemistry of thiamin phosphatases.Ann. NY Acad. Sci. 378:188–214.

    Google Scholar 

  • Page, M.G., Ankoma-Sey, V., Coulson, W.F., and Bender, D.A. (1989). Brain glutamate and γ-aminobutyrate (GABA) metabolism in thiamin-deficient rats.Brit. J. Nutr. 62:245–253.

    Google Scholar 

  • Patrini, C., Reggiani, C., Laforenza, U., and Rindi, G. (1988). Blood-brain transport of thiamine monophosphate in the rat: A kinetic study in vivo.J. Neurochem. 50:90–93.

    Google Scholar 

  • Penttinen, K.K., and Uotila, L. (1981). The relation of the soluble thiamine triphosphatase activity of various rat tissues to nonspecific phosphatases.Medical Biol. 59:177–184.

    Google Scholar 

  • Perri, V., Sacchi, O., and Casella, C. (1970a). Nervous transmission in the superior cervical ganglion of the thiamine deficient rat.Q. J. Exp. Physiol. 55:25–35.

    Google Scholar 

  • Perri, V., Sacchi, O., and Casella, C. (1970b). Action of oxythiamine and pyrithiamine on the isolated rat superior cervical ganglion.Q. J. Exp. Physiol. 55:36–43.

    Google Scholar 

  • Peter, J.B., Barnard, R.J., Edgerton, V.R., Gillespie, C.A., and Stempel, K.E. (1972). Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits.Biochem. 11:2627–2633.

    Google Scholar 

  • Peters, R.A. (1936). The biochemical lesion in vitamin B1 deficiency. Application of modern biochemical analysis in its diagnosis.Lancet 1:1161–1164.

    Google Scholar 

  • Peterson, J.W., Gubler, C.J., and Kuby, S.A. (1975). Partial purification and properties of thiamine pyrophosphokinase from pig brain.Biochim. Biophys. Acta 397:377–394.

    Google Scholar 

  • Petropulos, S.F. (1960). The action of an antimetabolite of thiamine on single myelinated nerve fibers.J. Cell. Comp. Physiol. 56:7–13.

    Google Scholar 

  • Pincus, J.H., and Grove, I. (1970). Distribution of thiamine phosphate esters in normal and thiamine deficient brain.Exp. Neurol. 28:477–483.

    Google Scholar 

  • Pincus, J.H., Solitaire, G.B., and Cooper, J.R. (1976). Thiamine triphosphate levels and histopathology. Correlation in Leigh's Disease.Arch. Neurol. 33:759–763.

    Google Scholar 

  • Postoenko, V.A., Parkhomenko, Y.M., Vovk, A.I., Khalmuradov, A.G., and Donchenko, G.V. (1987). Isolation and certain properties of the thiamin-binding protein of rat brain synaptosomes.Biokhimiya 52:1792–1797.

    Google Scholar 

  • Rao, V.L.R., Richardson, J.S., and Butterworth, R.F. (1993). Decreased activities of thiamine diphosphatase in frontal and temporal cortex in Alzheimer's disease.Brain Res. 631:334–336.

    Google Scholar 

  • Rindi, G. (1989). Alcohol and thiamine of the brain.Alcohol and Alcoholism 24:493–495.

    Google Scholar 

  • Rindi, G., and de Giuseppe, L. (1961). A new chromatographic method for the determination of thiamine and its mono-, di- and tri-phosphates in animal tissues.Biochem. J. 78:602–606.

    Google Scholar 

  • Rindi, G., de Giuseppe, L., and Ventura, V. (1963). Distribution and phosphorylation of oxythiamine.J. Nutr. 81:147–154.

    Google Scholar 

  • Rindi, G., Patrini, C., Cominciolo, V., and Reggiani, C. (1980). Thiamine content and turnover rates of some rat nervous regions, using labeled thiamine as a tracer.Brain Res. 181:369–380.

    Google Scholar 

  • Rindi, G., Comincioli, V., Reggiani, C., and Patrini, C. (1984). Nervous tissue thiamine metabolism in vivo. II. Thiamine and its phosphoester dynamics in different brain regions and sciatic nerve of the rat.Brain Res. 293:329–342.

    Google Scholar 

  • Rodgers, E.F. (1970). Thiamine antagonists. In McCormick, D.B. and Wright, L.D. (eds). Vitamins and Coenzymes. Meth. Enzymol. 18A. Academic Press, New York, pp. 245–258.

    Google Scholar 

  • Romanenko, A.V. (1990). A new way of muscle activity regulation: thiamine participation in neuromuscular transmission.Muscle and Motility 2:151–153.

    Google Scholar 

  • Rossi-Fanelli, A., Siliprandi, N., and Fasella, P. (1952). On the presence of triphosphothiamine (TPT) in the liver.Science 116:711–713.

    Google Scholar 

  • Roth, J., and Berger, E.G. (1982). Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans-Golgi cisternae.J. Cell. Biol. 92:223–229.

    Google Scholar 

  • Royer-Morrot, M.J., Zhiri, A., Paille, F., and Royer, R.J. (1992). Plasma thiamine concentrations after intramuscular and oral multiple dosage regimens in healthy men.Eur. J. Clin. Pharmacol. 42:219–222.

    Google Scholar 

  • Ruenwongsa, P., and Cooper, J.R. (1977). The role of bound thiamine pyrophosphate in the synthesis of thiamine triphosphate in rat liver.Biochim. Biophys. Acta 482:64–70.

    Google Scholar 

  • Sano, S., Matsuda, Y., Miyamoto, S., and Nakagawa, H. (1984). Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain.Biochem. Biophys. Res. Commun. 118:292–298.

    Google Scholar 

  • Sano, S., Matsuda, Y., and Nakagawa, H. (1988). Type B nucleoside-diphosphatase of rat brain. Purification and properties of an enzyme with high thiamine pyrophosphatase activity.Eur. J. Biochem. 171:231–236.

    Google Scholar 

  • Schrijver, J., Dias, T., and Hommes, F.A. (1978). Studies on ATP. Thiamine diphosphate phosphotransferase activity in rat brain.Neurochem. Res. 3:699–709.

    Google Scholar 

  • Schoffeniels, E., Dandrifosse, G., and Bettendorff, L. (1984). Phosphate derivatives of thiamine and Na+ channel in conducting membrane.J. Neurochem. 43:269–271.

    Google Scholar 

  • Schwartz, J.P., Lust, W.D., Shirazawa, R., and Passonneau, J.V. (1975). Glycolytic metabolism in cultured cells of the nervous system III. The effects of thiamine deficiency and pyrithiamine on the C-6 glioma and C-100 neuroblastoma cell lines.Mol. Cell. Biochem. 9:73–78.

    Google Scholar 

  • Schwartz, R.D., Skolnick, P., and Hollingsworth, E.B., and Paul, S.M. (1984). Barbiturate and picrotoxin-sensitive chloride efflux in rat cerebral cortical synaptoneurosomes.FEBS Lett. 175:193–196.

    Google Scholar 

  • Schwarze, W., and Kolb, H.-A. (1984). Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes.Pflügers Arch. 402:281–291.

    Google Scholar 

  • Sharma, S.K., and Quastel, J.H. (1965). Transport and metabolism of thiamine in rat brain cortex in vitro.Biochem. J. 94:790–800.

    Google Scholar 

  • Shetty, K.T., and Veeranna (1991). Thiamine pyrophosphatase in brain. Partial purification, regional distribution and ontogeny.Neurochem. Int. 19:33–37.

    Google Scholar 

  • Shikata, H., Egi, Y., Koyama, S., Yamada, K., and Kawasaki, T. (1989a). Properties of the thiamin triphosphate-synthesizing activity catalyzed by adenylate kinase (isoenzyme 1).Biochem. Internat. 18:943–949.

    Google Scholar 

  • Shikata, H., Koyama, S., Egi, Y., Yamada, K., and Kawasaki, T. (1989b). Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamine diphosphate.Biochem. Internat. 18:933–941.

    Google Scholar 

  • Shioda, T., and Kawasaki, T. (1992). Thiamin triphosphate does not affect contraction of skinned fibers.J. Nutr. Sci. Vitaminol. 38:529–533.

    Google Scholar 

  • Simchowitz, L., and De Weer, P. (1986). Chloride movements in human neutrophils. Diffusion, exchange and active transport.J. Gen. Physiol. 88:167–194.

    Google Scholar 

  • Sjöstrand, F. (1946). Cytological localization of riboflavin (vitamin B6) and thiamine (vitamin B1) by fluorescence microspectroscopy.Nature 157:698.

    Google Scholar 

  • Smidt, L.J., Cremin, F.M., Grivetti, L.E., and Clifford, A.J. (1991). Influence of thiamin supplementation on the health and general well-being of an elderly irish population with marginal thiamin deficiency.J. Gerontol. 46:M16-M22.

    Google Scholar 

  • Sorbi, S., and Blass, J.P. (1982). Abnormal activation of pyruvate dehydrogenase in Leigh disease fibroblasts.Neurology 32:555–558.

    Google Scholar 

  • Spector, R. (1976). Thiamine transport in the central nervous system.Am. J. Physiol. 230:1101–1107.

    Google Scholar 

  • Tallaksen C.M.E., Bøhmer, T., Bell, H., and Karlsen J. (1991). Concomitant determination of thiamin and its phosphate esters in human blood and serum by high performance liquid chromatography.J. Chromatogr. 564:127–136.

    Google Scholar 

  • Tanaka, C., and Cooper, J.R. (1968). The fluorescent microscopic localization of thiamine in nervous tissue.J. Histochem. Cytochem. 16:362–365.

    Google Scholar 

  • Tanaka, C., Itokawa Y., and Tanaka S. (1973). The axoplasmic transport of thiamine in rat sciatic nerve.J. Histochem. Cytochem. 21:81–86.

    Google Scholar 

  • Thornber, E.J., Dunlop, R.H., and Gawthorne, J.M. (1980). Thiamin deficiency in the lamb: changes in thiamin phosphate esters in the brain.J. Neurochem. 35:713–717.

    Google Scholar 

  • Troconso, J.C., Johnston, M.V., Hess, K.M., Griffin, J.W., and Price, D.L. (1981). Model of Wernicke's encephalopathy.Arch. Neurol. 38:350–354.

    Google Scholar 

  • Venosa P.A. (1979). Ionic movements across the plasma membrane of skeletal muscle fibers. InMembrane Transport in Biology vol. II (Giebisch, G., Tosteson, D.C., and Ussing H.H., eds). Springer Verlag Berlin.

    Google Scholar 

  • Von Muralt, A. (1942). Über den Nachweis von Aktionssubstanzen der Nervenerregung.Pflügers Arch. 245:604–632.

    Google Scholar 

  • Von Muralt, A. (1947). Thiamine and Peripheral Neurophysiology. InVitamins and Hormones vol 5 (Harris, R.S., and Thimann, K.V., eds) pp 93–118. Academic Press, New York.

    Google Scholar 

  • Von Muralt, A. and Zemp, J. (1943). Über die Freisetzung von Aneurin bei der Nervenerregung.Pflügers Arch. 246:746–748.

    Google Scholar 

  • Voskoboev, A.I., and Chernikevich, I.P. (1985). Biosynthesis of thiamine triphosphate and identification of thiamine diphosphate-binding proteins of rat liver hyaloplasm.Biokhimiya 50:1421–1427.

    Google Scholar 

  • Waldenlind, L. (1977). Release of thiamine and formation of a methylthiamine-like substance in the phrenic nerve-diaphragm preparation of the rat.Acta Physiol. Scand. 101:22–27.

    Google Scholar 

  • Waldenlind, L. (1979). Possible role of thiamine in neuromuscular transmission.Acta Physiol. Scand. 105:1–10.

    Google Scholar 

  • Waldenlind, L., Elfman, L., and Rydqvist, B. (1978). Binding of thiamine to nicotinic acetylcholine receptor in Torpedo marmorata and the frog end plate.Acta Physiol. Scand. 103:154–159.

    Google Scholar 

  • Weber, W., and Kewitz, H. (1985). Determination of thiamine in human plasma and its pharmacocinetics.Eur. J. Clin. Pharmacol. 28:213–219.

    Google Scholar 

  • Wielders, J.P.M., and Mink, C.J.K. (1983). Quantitative analysis of total thiamine in human blood, milk and cerebrospinal fluid by reversed-phase ion-pair high-performance liquid chromatography.J. Chromatogr. 277:145–156.

    Google Scholar 

  • Woolley, D.W. (1953). Biosynthesis and energy transport by enzymic reduction of “onium” salts.Nature 171:323–328.

    Google Scholar 

  • Yamashita, H., Zhang, Y., and Nakamura, S. (1993). The effects of thiamin and its phosphate esters on dopamine release in the rat striatum.Neurosc. Lett. 158:229–231.

    Google Scholar 

  • Yamazaki, M., and Hayaishi, O. (1968). Allosteric properties of nucleoside diphosphatase and its identity with thiamine pyrophosphatase.J. Biol. Chem. 243:2934–2942.

    Google Scholar 

  • Yusa, T. (1962). Studies in thiamine triphosphate II. Thiamine triphosphate as phosphate donor.Plant Cell. Physiol. 3:95–103.A0431001 00003 CS-SPJRNPDF [HEADSUP]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettendorff, L. Thiamine in excitable tissues: Reflections on a non-cofactor role. Metab Brain Dis 9, 183–209 (1994). https://doi.org/10.1007/BF01991194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01991194

Key words

Navigation