Skip to main content
Log in

Blood flow and blood volume determinations in aorta and in coronary circulation by density dilution

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Continuous blood mass-density measurements were performed in anesthetized dogs and injections of 0.7–1.4 ml/kg isotonic saline solution were applied. The resulting density dilution curves were used to compute blood volume, total flow in the aorta and local flow in the coronary circulation. Blood volume calculations were compared with blood volume determined by Evans blue injections and a close agreement was found. Blood flow determined by density dilution was independent from the investigated sites of injection or sampling. We conclude from these results that small volume injections of isotonic saline solution can be used to determine blood volume and flow by density dilution.

In addition to these findings, a marked retention of the injected fluid was observed. Possible mechanisms to explain this retention include albumin deposition in the endothelial pores and/or variations of blood viscosity and capillary pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biological Handbooks (1971) Respiration and Circulation, FASEB, Bethesda, Maryland

  2. Brace RA, Power GG (1981) Thoracic duct lymph flow and protein flux dynamics: response to intravascular saline. Am J Physiol 240:R282-R288

    PubMed  Google Scholar 

  3. Chinard FP, Enns T, Nolan MF (1962) Indicator-dilution studies with “diffusible” indicators. Circulation Research 10:473–490

    PubMed  Google Scholar 

  4. Chinard F, Enns T (1954) Transcapillary pulmonary exchange of water in the dog. Am J Physiol 178:197–202

    PubMed  Google Scholar 

  5. Fell C, Rushmer RF (1961) Anatomic distribution of induced changes in blood volume, evaluated by regional weighting. J Appl Physiol 16 (1):85–88

    PubMed  Google Scholar 

  6. Gamas L, Lee JS (1986) Density indicator method to measure pulmonary blood flow. J Appl Physiol 60:327–334

    Article  PubMed  Google Scholar 

  7. Hinghofer H (1986) Continuous blood densitometry: Fluid shifts after graded hemorrhage in animals. Am J Physiol 250:H342-H350

    PubMed  Google Scholar 

  8. Holzer H, Leopold H, Hinghofer-Szalkay H, Stübchen-Kirchner H, Maurer E (1978) Gesamteiweißbestimmung im Serum durch Dichtemessung nach der Biegeschwingermethode. J Clin Chem Clin Biochem 16:394–395

    Google Scholar 

  9. Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509

    PubMed  Google Scholar 

  10. Kenner T (1982): Physiological measurement in circulation research. Med Progr Techn 9:67–74

    Google Scholar 

  11. Kenner T, Leopold H, Hinghofer-Szalkay H (1977) The continuous high precision measurement of the density of flowing blood. Pflügers Arch 370:151–157

    Article  Google Scholar 

  12. Kenner T, Moser M, Hinghofer-Szalkay H (1980) Determination of cardiac output and transcapillary fluid exchange by continuous recording of blood density. Basic Res Cardiol 75:501–509

    PubMed  Google Scholar 

  13. Kratky O, Leopold H, Stabinger H (1969) Dichtemessung an Flüssigkeiten und Gasen auf 10−6 g/cm3 bei 0,6 cm3 Präparatvolumen. Z angew Physik 27:273–277

    Google Scholar 

  14. Lee J, Salathe EP, Schmid-Schönbein GW (1987) Fluid exchange in skeletal muscle with viscoclastic blood vessels. Am J Physiol 253:H1548-H1556

    PubMed  Google Scholar 

  15. Michel CC (1988) Microvascular exchange and its regulation. Pflügers Arch 411:R8-R9

    Article  Google Scholar 

  16. Michel CC (1984) Fluid movements through capillary walls. Hb of Physiol Sect 2, Vol 4; Part 1, pp 375–409

    Google Scholar 

  17. Moser M (1980) Die Anwendbarkeit von Blut- und Plasmadichtemessungen mittels der Biegeschwingermethode auf Fragen des Flüssigkeitsaustausches in der Mikrozirkulation. Dissertation Graz

  18. Moser M, Hinghofer-Szalkay H, Kenner Th, Holzer H (1980) Die Bestimmung des kolloidosmotischen Drucks aus der Plasmadichte mittels der Biegeschwingermethode. J Clin Chem Clin Biochem 18:233–236

    PubMed  Google Scholar 

  19. Moser M, Kenner T, Hinghofer-Szalkay H, Wurm H (1982) Distribution spaces of intravenously injected saline, plasma and red cell concentrate. Pflügers Arch 394 S, R48

  20. Parker JC, Perry MA, Taylor AE (1984) Permeability of the microvascular barrier. In: Edema, Staub NC, Taylor AE (eds) Raven Press

  21. Trautman E, Newbower RS (1984) The development of indicator-dilution techniques. IEEE Trans on Biochem Eng 12:800–807

    Google Scholar 

  22. Wasserman K, Mayerson HS (1952) Mechanism of plasma protein changes following saline infusions. Am J Physiol 170:1–10

    PubMed  Google Scholar 

  23. Wolf MB (1975) Estimation of parameters affecting rapid fluid transfers in the whole body. I. Isotonic infusions. Ann Biomed Eng 3:209–224

    PubMed  Google Scholar 

  24. Wolthuis RA, Overbeck HW, Collins WD (1969) Measurement of blood flow in the limb of man by cuvette densitometry. J Appl Physiol 26(2):215–220

    PubMed  Google Scholar 

  25. Yudilevich DL, Alvarez OA (1967) Water, sodium, and thiourea transcapillary diffusion in the dog heart. Am J Physiol 213(2):308–314

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moser, M., Kenner, T. Blood flow and blood volume determinations in aorta and in coronary circulation by density dilution. Basic Res Cardiol 83, 577–589 (1988). https://doi.org/10.1007/BF01906951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906951

Key words

Navigation