Skip to main content
Log in

Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase)

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. 1. The volume recovery was inhibited when NO 3 was substituted for Cl, and when Na+ was replaced by K+, or by choline (at 5mm external K+). 2. The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. 3. The net uptake of Cl was much larger than the value predicted from the conductive Cl permeability. The unidirectional36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. 4. During volume recovery the Cl flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl, or with an uptake via a K+, Na+, 2Cl cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. 5. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+, Cl cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+, Cl cotransport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aull, F. 1981. Potassium chloride cotransport in steady-state ascites tumor cells. Does bumetanide inhibit?Biochim. Biophys. Acta 643: 339–345

    PubMed  Google Scholar 

  • Aull, F. 1982. Specific drug sensitive transport pathways for chloride and potassium ions in steady-state Ehrlich mouse ascites tumor cells.Biochim. Biophys. Acta 688: 740–746

    PubMed  Google Scholar 

  • Aull, F., Nachbar, M.S., Oppenheim, J.D. 1977. Chloride self exchange in Ehrlich ascites cells. Inhibition by furosemide and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid.Biochim. Biophys. Acta 471: 341–347

    PubMed  Google Scholar 

  • Cala, P.M. 1977. Volume regulation by flounder red blood cells in anisotonic media.J. Gen. Physiol. 69: 537–552

    PubMed  Google Scholar 

  • Cala, P.M. 1980. Volume regulation byAmphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways.J. Gen. Physiol. 76: 683–708

    Article  PubMed  Google Scholar 

  • Chipperfield, A.R. 1981. Chloride dependence of frusemide-and phloretin-sensitive passive sodium and potassium fluxes in human red cells.J. Physiol. (London) 312: 435–444

    Google Scholar 

  • Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence upon cell volume and chloride.J. Physiol. (London) 318: 511–530

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77: 1711–1715

    PubMed  Google Scholar 

  • Eagle, H. 1971. Buffer combinations for mammalian cell culture.Science 174: 500–503

    PubMed  Google Scholar 

  • Eveloff, J., Kinne, R., Kinne-Saffran, E., Murer, H., Silva, P., Epstein, F.H., Stoff, J., Kinter, W.B. 1978. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland.Pfluegers Arch. 378: 87–92

    Google Scholar 

  • Geck, P., Heinz, E., Pietrzyk, C., Pfeiffer, B. 1978. The effect of furosemide on the ouabain-insensitive K+ and Cl movement in Ehrlich cells.In: Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach. R.W. Straub and L. Bolis, editors. pp. 301–307. Raven Press, New York

    Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.-C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600: 432–447

    PubMed  Google Scholar 

  • Grinstein, S., Clarke, C.A., DuPre, A., Rothstein, A. 1983. Volume-induced increase of anion permeability in human lymphocytes.J. Gen. Physiol. 89: 801–823

    Google Scholar 

  • Grinstein, S., DuPre, A., Rothstein, A. 1982. Volume regulation by human lymphocytes. Role of calcium.J. Gen. Physiol. 79: 849–868

    Google Scholar 

  • Grobecker, H., Kromphardt, H., Mariani, H., Heinz, E. 1963. Untersuchungen über den Elektrolyt Haushalt der Ehrlich Ascites Tumor Zelle.Biochem. Z. 337: 462–476

    PubMed  Google Scholar 

  • Haas, M., Schmidt, W.F., III, McManus, T.J. 1982. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral Na+K+2Cl co-transport.J. Gen. Physiol. 80: 125–147

    PubMed  Google Scholar 

  • Heinz, E., Geck, P., Pietrzyk, C. 1975. Driving forces of amino acid transport in animal cells.Ann. N.Y. Acad. Sci. 264: 428–441

    PubMed  Google Scholar 

  • Hendil, K.B., Hoffmann, E.K. 1974. Cell volume regulation in Ehrlich ascites tumor cells.J. Cell. Physiol. 84: 115–125

    Article  PubMed  Google Scholar 

  • Hempling, H.G. 1960. Permeability of the Ehrlich ascites tumor cell to water.J. Gen. Physiol. 44: 365–379

    PubMed  Google Scholar 

  • Hempling, H.G. 1966. Sources of energy for the transport of potassium and sodium across the membrane of the Ehrlich mouse ascites tumor cell.Biochim. Biophys. Acta 112: 503–518

    Google Scholar 

  • Hoffmann, E.K. 1977. Control of cell volume.In: Transport of Ions and Water in Animals. B.J. Gupta, R.B. Moreton, J.L. Oschman and B.J. Wall, editors. pp. 285–332. Academic Press, London

    Google Scholar 

  • Hoffmann, E.K. 1978. Regulation of cell volume by selective changes in the leak permeabilities of Ehrlich ascites tumor cells.In: Osmotic and Volume Regulation. Alfred Benzon Symposium XI. C.B. Jørgensen and E. Skadhauge, editors. pp. 397–417. Munksgaard, Copenhagen

    Google Scholar 

  • Hoffmann, E.K. 1982. Anion exchange and anion-cation cotransport systems in mammalian cells.Philos. Trans. R. Soc. London, B. 299: 519–539

    Google Scholar 

  • Hoffmann, E.K. 1983. Volume regulation by animal cells.In: Cellular Acclimatization to Environmental Change. Society for Experimental Biology. Seminar Series 18. A.R. Cossins and P.G. Shetterline, editors. pp. 55–80. Cambridge University Press, Cambridge

    Google Scholar 

  • Hoffmann, E.K., Lambert, I.H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumor cells.J. Physiol. (London) 338: 613–625

    Google Scholar 

  • Hoffmann, E.K., Simonsen, L.O., Lambert, I.H. 1983. Volume-induced increase of K+ and Cl permeabilities in Ehrlich ascities tumor cells. Role of internal Ca2+.J. Membrane Biol. (Submitted)

  • Hoffmann, E.K., Simonsen, L.O., Sjøholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.J. Physiol. (London) 296: 61–84

    Google Scholar 

  • Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1981. Anion-cation co-transport and volume regulation in Ehrlich ascites tumour cells.J Physiol. (London) 319: 94P-95P

    Google Scholar 

  • Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69: 363–386

    Google Scholar 

  • Kregenow, F.M. 1981. Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media.Annu. Rev. Physiol. 43: 493–505

    Article  PubMed  Google Scholar 

  • Kristensen, P., Ussing, H.H. 1983. Epithelial organization.In: Physiology and Pathology of Electrolyte Metabolism. D.W. Seldin and G. Giebisch, editors. Raven Press, New York (In press)

    Google Scholar 

  • Lassen, U.V., Nielsen, A.-M.T., Pape, L., Simonsen, L.O. 1971. The membrane potential of Ehrlich ascites tumor cells: Microelectrode measurements and their critical evaluation.J. Membrane Biol. 6: 269–288

    Google Scholar 

  • Lauf, P.K. 1982. Evidence for chloride dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost,Opsanus tau.J. Comp. Physiol. 146: 9–16

    Google Scholar 

  • Lauf, P.K., Theg, B.E. 1980. A chloride dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochem. Biophys. Res. Commun. 92: 1422–1428

    PubMed  Google Scholar 

  • Leaf, A. 1959. Maintenance of concentration gradients and regulation of cell volume.Ann. N.Y. Acad. Sci. 72: 396–404

    PubMed  Google Scholar 

  • Levinson, C. 1978. Chloride and sulphate transport in Ehrlich ascites tumor cells: Evidence for a common mechanism.J. Cell. Physiol. 95: 23–32

    PubMed  Google Scholar 

  • Levinson, C., Villereal, M.L. 1976. The transport of chloride in Ehrlich ascites tumor cells.J. Cell. Physiol. 88: 181–192

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1978. Calcium transport and the properties of a calcium-activated potassium channel in red cell membranes.Curr. Top. Membr. Transp. 10: 217–277

    Google Scholar 

  • MacKnight, A.D.C., Leaf, A. 1977. Regulation of cellular volume.Physiol. Rev. 57: 510–573

    PubMed  Google Scholar 

  • McManus, T.J., Schmidt, W.F., III. 1978. Ion and co-ion transport in avian red cells.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 79–106. Raven Press, New York

    Google Scholar 

  • Mills, B., Tupper, J.T. 1975. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell.J. Membrane Biol. 20: 75–97

    Google Scholar 

  • Nellans, H.N., Frizzell, R.A., Schultz, S.G. 1973. Coupled sodium-chloride influxes across the brush border of rabbit ileum.Am. J. Physiol. 225: 467–475

    PubMed  Google Scholar 

  • Palfrey, H.C., Feit, P.W., Greengard, P. 1980. cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics.Am. J. Physiol. 238: C139-C148

    PubMed  Google Scholar 

  • Parker, J.C. 1983. Hemolytic action of potassium salts on dog red blood cells.Am. J. Physiol. 244: C313-C317

    PubMed  Google Scholar 

  • Poulsen, J.H., Laugesen, L.P., Nielsen, J.O.D. 1982. Evidence supporting that baso-laterally located Na+−K+-ATPase and a co-transport system for sodium and chloride are key elements in secretion of primary saliva.In: Electrolyte and Water Transport Across Gastrointestinal Epithelia. R.M. Case, A. Garner, L. Turnberg and J.A. Young, editors. pp. 199–208. Raven Press, New York

    Google Scholar 

  • Simonsen, L.O., Hoffmann, E.K., Sjøholm, C. 1976. Chloride conductance of the Ehrlich ascites tumor cell membrane.FEBS-Symposium on the Biochemistry of Membrane Transport. p. 225

  • Simonsen, L.O., Nielsen, A.-M.T. 1971. Exchangeability of chloride in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 241: 522–527

    PubMed  Google Scholar 

  • Sjøholm, C., Hoffmann, E.K., Simonsen, L.O. 1981. Anion-cation co-transport and anion exchange in Ehrlich ascites tumour cells.Acta Physiol. Scand. 112: 24A

    Google Scholar 

  • Sten-Knudsen, O., Ussing, H.H. 1981. The flux ratio equation under nonstationary conditions.J. Membrane Biol. 63: 233–242

    Google Scholar 

  • Tosteson, D.C., Hoffman, J.F. 1960. Regulation of cell volume by active cation transport in high and low potassium sheep red cells.J. Gen. Physiol. 44: 169–194

    PubMed  Google Scholar 

  • Tupper, J.T. 1975. Cation flux in the Ehrlich ascites tumor cell. Evidence for Na-for-Na and K-for-K exchange diffusion.Biochim. Biophys. Acta 394: 586–596

    Google Scholar 

  • Ussing, H.H. 1960. Active and passive transport of the alkali metal ions.In: The Alkali Metal Ions in Biology. H.H. Ussing, P. Kruhøffer, J. Hess Thaysen and N.A. Thorn, editors. pp. 45–143 (p. 67). Springer-Verlag, Berlin

    Google Scholar 

  • Ussing, H.H. 1982. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114: 363–369

    PubMed  Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., Herreros, B. 1982. Ca2+-dependent K+ transport in the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 685: 273–278

    PubMed  Google Scholar 

  • Weiss, B., Prozialeck, W., Cimino, M., Barnette, M.S., Wallace, T.L. 1980. Pharmacological regulation of calmodulin.In: Calmodulin and Cell Functions. D.M. Watterson and F.F. Vincenzi, editors.Ann. N.Y. Acad. Sci. 356: 319–345

    PubMed  Google Scholar 

  • Wieth, J.O., Brahm, J. 1983. Cellular anion exchange.In: Physiology and Pathology of Electrolyte Metabolism. D.W. Seldin and G. Giebisch, editors. Raven Press, New York (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, E.K., Sjøholm, C. & Simonsen, L.O. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase). J. Membrain Biol. 76, 269–280 (1983). https://doi.org/10.1007/BF01870369

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870369

Key Words

Navigation