Skip to main content
Log in

Physiologie und Biochemie der Knochenbildung

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Die heutige Auffassung der physiologischen und biochemischen Vorgänge bei der Knochenbildung wurden kurz dargelegt. Der Aufbau und die Struktur der drei Hauptbestandteile des Knochens, die Zellen, das organische Stroma und das Mineral, wurde besprochen. Insbesondere ist auf die Differenzierungsvorgänge in Osteoblasten, welche die Synthese der Kollagenfasern und der Grundsubstanz vollziehen und auf den Mechanismus der Calciumphosphatablagerung eingegangen worden.

Summary

Current concepts of the physiology and biochemistry of bone formation have been briefly reviewed. The synthesis and the structure of the three basic parts of bone, cells, organic matrix and mineral are described. After differentiation the osteoblasts synthesize the collagen fibers and the mucoproteins of the organic matrix. This organic matrix is probably involved in the regulation of calcium phosphate deposition, although the mechanism is still poorly understood. Other factors influencing mineralization are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. McLean, F. C., andM. R. Urist: Bone. Chicago: Chicago University Press 1955 and 1961.

    Google Scholar 

  2. Neuman, W. F., andM. W. Neuman: The chemical dynamics of bone mineral. Chicago: Chicago University Press 1958.

    Google Scholar 

  3. Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt Surg. A44, 1217–1244 (1962).

    Google Scholar 

  4. Pritchard, J. J.: General anatomy and histology of bone. In:G. H. Bourne (ed.), Bone, p. 1–25. New York: Academic Press 1956.

    Google Scholar 

  5. Dudley, H. R., andD. Spiro: The fine structure of bone cells. J. biophys. biochem. Cytol.11, 627–649 (1961).

    Google Scholar 

  6. Leblond, C. P., P. Lacroix, R. Ponlot etA. Dhem: Les stades initiaux de l'ostéogénèse. Nouvelles données histochemiques et autoradiographiques. Bull. Acad. roy. Méd. Belg.24, 421–443 (1959).

    Google Scholar 

  7. Tonna, E. A., E. P. Cronkite, andM. Pavelec: An autoradiographic study of the localization and distribution of tritiated histidine in bone. J. Histochem. Cytochem.10, 601–610 (1962).

    Google Scholar 

  8. Young, R. W.: Autoradiographic studies on postnatal growth of the skull in young rats injected with tritiated glycine. Anat. Rec.143, 1–13 (1962).

    Google Scholar 

  9. Tonna, E. A., andE. P. Cronkite: Histochemical and autoradiographic studies on the effects of aging on the mucopolysaccharides of the periosteum. J. biophys. biochem. Cytol.6, 171–178 (1959).

    Google Scholar 

  10. Young, R. W.: Cell proliferation and specialization during endochondral osteogenesis in young rats. J. Cell Biol.14, 357–370 (1962).

    Google Scholar 

  11. Trueta, J.: A theory of bone formation. Acta orthop. scand.23, 190–198 (1962).

    Google Scholar 

  12. Krompecher, S.: Die Knochenbildung. Jena: Gustav Fischer 1937.

    Google Scholar 

  13. Allgöwer, M., u.S. Perren: Persönliche Mitteilung.

  14. Moss, M. L.: In:R. F. Sognnaes (ed.), Calcification in biological systems, p. 323–348. Washington: Amer. Ass. Advanc. Sci. 1960.

    Google Scholar 

  15. Goldhaber, P.: Osteogenic induction across millipore filters in vivo. Science133, 2065–2067 (1961).

    Google Scholar 

  16. Levander, G.: Tissue induction. Nature (Lond.)155, 148–149 (1945).

    Google Scholar 

  17. Annersten, S.: Experimentelle Untersuchungen über die Osteogenese und die Biochemie des Fracturcallus. Acta chir. scand.84, Suppl. 60, 1–181 (1940).

    Google Scholar 

  18. Lacroix, P.: L'organisation des os. Paris: Masson & Cie. 1949.

    Google Scholar 

  19. Goldhaber, P.: Some current concepts of bone physiology. New Engl. J. Med.266, 870–877 and 924–931 (1962).

    Google Scholar 

  20. Glücksmann, A.: The role of mechanical stresses in bone formation in vitro. J. Anat. (Lond.)76, 231–239 (1942).

    Google Scholar 

  21. Bassett, C. A. L.: Electrical effects in bone. Sci. Amer.213, 18–25 (1965).

    Google Scholar 

  22. Bassett, C. A. L.: Electromechanical factors regulating bone architecture. In:H. Fleisch, H. J. J. Blackwood andM. Owen (eds.), Calcified tissues 1965. Berlin-New York-Heidelberg: Spring (in press).

    Google Scholar 

  23. Owen, M.: Cell differentiation in bone. In:L. J. Richelle andM. J. Dallemagne (eds.), Calcified tissues, p. 11–22. Liège: Collection des Colloques de l'Université de Liège 1965.

    Google Scholar 

  24. Eastoe, J. E.: The organic matrix of bone. In:G. H. Bourne (ed.), The biochemistry and physiology of bone, p. 81–105. New York: Academic Press 1956.

    Google Scholar 

  25. Ramachandran, G. N., andG. Kartha: Structure of collagen. Nature (Lond.)174, 269–270 (1954).

    Google Scholar 

  26. Rich, A., andF. H. C. Crick: The molecular structure of collagen. J. molec. Biol.3, 483–506 (1961).

    Google Scholar 

  27. Gross, J.: Collagen. Sci. Amer.204, 121–130 (1961).

    Google Scholar 

  28. Kühn, K.: Die Struktur des Kollagens. Leder13, 73–78 (1962).

    Google Scholar 

  29. Gross, J., J. H. Highberger, andF. O. Schmitt: Collagen structures considered as states of aggregation of a kinetic unit. The tropocollagen particle. Proc. nat. Acad. Sci. (Wash.)40, 679–688 (1954).

    Google Scholar 

  30. Boedtker, H., andP. Doty: The native and denatured states of soluble collagen. J. Amer. chem. Soc.78, 4267–4280 (1956).

    Google Scholar 

  31. Hall, C. E., andP. Doty: A comparison between the dimensions of some macromolecules determined by electron microscopy and by physical chemical methods. J. Amer. chem. Soc.80, 1269–1274 (1958).

    Google Scholar 

  32. Schmitt, F. O., J. Gross, andJ. H. Highberger: Tropocollagen and the properties of fibrous collagen. Exp. Cell Res., Suppl.3, 326–334 (1955).

    Google Scholar 

  33. Hodge, A. J., andF. O. Schmitt: The charge profile of the tropocollagen macromolecule and the packing arrangement in native-type collagen fibrils. Proc. nat. Acad. Sci. (Wash.)46, 186–197 (1960).

    Google Scholar 

  34. Kühn, K., u.E. Zimmer: Eigenschaften des Tropokollagenmoleküls und deren Bedeutung für die Fibrillenbildung. Z. Naturforsch.16, 648–658 (1961).

    Google Scholar 

  35. Piez, K. A., E. A. Eigner, andM. S. Lewis: The chromatographic separation and amino acid composition of the subunits of several collagens. Biochemistry2, 58–66 (1963).

    Google Scholar 

  36. Petruska, J. A., andA. J. Hodge: A subunit model for the tropocollagen macromolecule. Proc. nat. Acad. Sci. (Wash.)51, 871–876 (1964).

    Google Scholar 

  37. Gross, J.: The behaviour of collagen units as a model in morphogenesis. J. biophys. biochem. Cytol.2, Suppl. 2, 261–274 (1956).

    Google Scholar 

  38. Wood, G. C.: The formation of fibrils from collagen solutions. 3. Effect of chondroitin sulphate and some other naturally occurring polyanions on the rate of formation. Biochem. J.75, 605–612 (1960).

    Google Scholar 

  39. Banga, I., J. Balo, andD. Scabò: Collagen mucoproteinase and other collagenases. Acta physiol. Acad. Sci. hung.19, 19–26 (1961).

    Google Scholar 

  40. Asboe, H. G.: Connective tissue. Ann. Rev. Physiol.25, 41–60 (1963).

    Google Scholar 

  41. Robertson W. B. van, J. Hewitt, andC. Herman: The relation of ascorbie acid to the conversion of proline to hydroxyproline in the synthesis of collagen in the carrageenan granuloma. J. biol. Chem.234, 105–108 (1959).

    Google Scholar 

  42. Fitton Jackson, S.: Connective tissue cells. In:J. Brachet andA. E. Mirsky (eds.), The cell VI, p. 387–520. New York: Academic Press 1964.

    Google Scholar 

  43. Meyer, K.: The mucopolysaccharides of bone. In:G. E. W. Wolstenholme andC. M. O'Connor (eds.), Ciba Foundation Symposium on Bone Structure and Metabolism, p. 65–74. London: J. & A. Churchill Ltd. 1956.

    Google Scholar 

  44. Mathews, M., andI. Lozaityte: Sodium chondroitin sulfate-protein complexes of cartilage. I. Molecular weight and shape. Arch. Biochem.74, 158–174 (1958).

    Google Scholar 

  45. Partridge, S. M., H. F. Davis, andG. S. Adeir: The chemistry of connective tissues. 6. The constitution of the chondroitin sulphate-protein complex in cartilage. Biochem. J.79, 15–26 (1961).

    Google Scholar 

  46. Dziewiatkowski, D. D.: Intracellular synthesis of chondroitin sulfate. J. Cell. Biol.13, 359–364 (1962).

    Google Scholar 

  47. Dorfman, A.: The biochemistry of connective tissue. J. chron. Dis.10, 403–417 (1959).

    Google Scholar 

  48. Boström, H., andE. Odeblad: The influence of cortisone upon the sulphate exchange of chondroitin sulphuric acid. Ark. Kemi (Stockh.)6, 39–42 (1953).

    Google Scholar 

  49. Slack, H.: Connective tissue growth stimulated by carrageenin. 3.. Biochem. J.69, 125–134 (1958).

    Google Scholar 

  50. Vincent, J.: Recherches sur la constitution de l'os adulte. Thèse. Bruxelles: Arscia 1955.

    Google Scholar 

  51. Leblond, C. P., L. F. Bélanger, andR. C. Greulich: Formation of bones and teeth as visualized by radioautography. Ann. N.Y. Acad. Sci.60, 631–659 (1955).

    Google Scholar 

  52. Bélanger, L. F.: Autoradiographic studies of the formation of the organic matrix of cartilage, bone and the tissues of teeth. In:G. E. W. Wolstenholme andC. M. O'Connor (eds.), Ciba Foundation Symposium on Bone Structure and Metabolism, p. 75–88. London: Churchill 1956.

    Google Scholar 

  53. Sobel, A. E., M. Burger, andS. Nobel: Mechanisms of nuclei formation in mineralizing tissues. Clin. Orthop.17, 103–123 (1960).

    Google Scholar 

  54. Hass, G. M.: Studies of cartilage. IV. A morphologic and chemical analysis of aging human costal cartilage. Arch. Path.35, 275–284 (1943).

    Google Scholar 

  55. Glimcher, M. J.: Molecular biology of mineralized tissues with particular reference to bone. Rev. med. Phys.31, 359–393 (1959).

    Google Scholar 

  56. Hamerman, D., andM. Schubert: Diarthrodial joints, an essay. Amer. J. Med.33, 555–590 (1962).

    Google Scholar 

  57. Krane, S. M., G. L. Gordon, J. B. Stanbury, andH. Corrigan: The effect of thyroid disease on calcium metabolism in man. J. clin. Invest.35, 874–887 (1956).

    Google Scholar 

  58. Frost, H. M.: Bone remodelling dynamics. Springfield (Ill.): Ch. C. Thomas 1963.

    Google Scholar 

  59. Lafferty, F. W., G. E. Spencer, andO. H. Pearson: Effects of androgens, estrogens and high calcium intakes on bone formation and resorption in osteoporosis. Amer. J. Med.36, 514–528 (1964).

    Google Scholar 

  60. Heaney, R. P.: Radiocalcium metabolism in disuse osteoporosis in man. Amer. J. Med.33, 188–200 (1962).

    Google Scholar 

  61. Dymling, J. F.: Calcium kinetics in osteopenia and parathyroid disease. Acta med. scand.175, Suppl. 408 (1964).

    Google Scholar 

  62. Nordin, B. E. C.: Hormones and calcium metabolism. In:H. Fleisch, H. J. J. Blackwood andM. Owen (eds.), Calcified tissues 1965. Berlin-Heidelberg- New York: Springer (in press).

    Google Scholar 

  63. Dallemagne, M. J.: La calcémie et le métabolisme calcique, sect. C: Influences endocriniennes. In:Z. M. Bacq (ed.), Handbuch der experimentellen Pharmakologie, Bd. 17/2, S. 136–272. Berlin-Heidelberg-New York: Springer 1964.

    Google Scholar 

  64. Robinson, R. A., andM. L. Watson: Crystal-collagen relationships in bone as observed in the electron microscope. III. Crystal and collagen morphology as a function of age. Ann. N.Y. Acad. Sci.60, 596–628 (1955).

    Google Scholar 

  65. Cameron, A. D.: The fine structure of bone and calcified cartilage. A critical review of the contribution of electron microscopy to the understanding of osteogenesis. Clin. Orthop.26, 199–228 (1963).

    Google Scholar 

  66. Carlström, D.: X-ray crystallographic studies on apatites and calcified structures. Acta radiol. (Stockh.), Suppl. 121 (1955).

  67. Posner, A. S.: The nature of the inorganic phase in calcified tissues. In:R. F. Sognnaes (ed.), Calcification in biological systems, p. 373–394. Washington: Amer. Ass. Advanc. Sci. 1960.

    Google Scholar 

  68. McConnell, D.: The crystal structure of bone. Clin. Orthop.23, 253–268 (1962).

    Google Scholar 

  69. Fleisch, H., R. G. G. Russell, F. Straumann, andJ. Maerki: The effect of pyrophosphate on the solubility of hydroxyapatite. Nature (Lond.) (unterbreitet).

  70. Brown, W. E., J. P. Smith, J. R. Lehr, andA. W. Frazier: Octacalcium phosphate and hydroxyapatite. Nature (Lond.)196, 1048–1055 (1962).

    Google Scholar 

  71. MacGregor, J., andW. E. Brown: Blood: Bone equilibrium in calcium homeostasis. Nature (Lond.)205, 359–361 (1965).

    Google Scholar 

  72. Dallemagne, M. J.: Le calcium dans le squelette et les dents. In:Z. M. Bacq (ed.), Handbuch der experimentellen Pharmakologie, Bd. 17/2, S. 273–482. Berlin-Heidelberg-New York: Springer 1964.

    Google Scholar 

  73. Robison, R.: The significance of phosphoric esters in metabolism. New York: New York Univ. Press 1932.

    Google Scholar 

  74. Siffert, R. S.: The role of alkaline phosphatase in osteogenesis. J. exp. Med.93, 415–426 (1951).

    Google Scholar 

  75. Kroon, D. B.: Phosphatase and the formation of protein-carbohydrate complexes. Acta anat. (Basel)15, 317–328 (1952).

    Google Scholar 

  76. Sobel, A. E.: Local factors in the mechanism of calcification. Ann. N.Y. Acad. Sci.60, 713–732 (1955).

    Google Scholar 

  77. Irving, J. T.: The sudanophil material at sites of calcification. Arch. oral Biol.8, 735–745 (1963).

    Google Scholar 

  78. Bucher, R., u.R. Straumann: Die Bedeutung der kristallinen Struktur der kollagenen Faser für die normale und pathologische Kalkpräzipitation. Schweiz. med. Wschr.67, 619–622 (1937).

    Google Scholar 

  79. Glimcher, M. J., A. J. Hodge, andF. O. Schmitt: Macromolecular aggregation states in relation to mineralization: the collagen-hydroxyapatite system as studied in vitro. Proc. nat. Acad. Sci. (Wash.)43, 860–867 (1957).

    Google Scholar 

  80. Solomons, C. C., andW. F. Neuman: On the mechanisms of calcification: the remineralization of dentine. J. biol. Chem.235, 2502–2506 (1960).

    Google Scholar 

  81. Glimcher, M. J.: Specificity of the molecular structure of organic matrices in mineralization. In:R. F. Sognnaes (ed.), Calcification in biological systems, p. 421–487. Washington: Amer. Ass. Advanc. Sci. 1960.

    Google Scholar 

  82. Fleisch, H., andW. F. Neuman: Mechanisms of calcification: Role of collagen, polyphosphates, and phosphatase. Amer. J. Physiol.200, 1296–1300 (1961).

    Google Scholar 

  83. Fitton Jackson, S.: The fine structure of developing bone in the embryonic fowl. Proc. roy. Soc. B146, 270–280 (1957).

    Google Scholar 

  84. Fitton Jackson, S.: Fibrogenesis and the formation of matrix. In:K. Rohdahl, J. T. Nicholson andE. M. Brown (eds.), Bone as a tissue, p. 165–185. New York: McGraw-Hill Book Co. 1960.

    Google Scholar 

  85. Glimcher, M. J., andS. M. Krane: The identification of serine phosphate in enamel proteins. Biochim. biophys. Acta (Amst.)90, 477–483 (1964).

    Google Scholar 

  86. Krane, S. M., andM. J. Glimcher: Protein phosphorous and phosphokinase in connective tissue. In:H. Fleisch, H. J. J. Blackwood andM. Owen (eds.), Calcified tissues 1965. Berlin-Heidelberg-New York: Springer (in press).

    Google Scholar 

  87. Fleisch, H., andS. Bisaz: Isolation from urine of pyrophosphate, a calcification inhibitor. Amer. J. Physiol.203, 671–675 (1962).

    Google Scholar 

  88. Fleisch, H., andS. Bisaz: Mechanism of calcification: inhibitory role of pyrophosphate. Nature (Lond.)195, 911 (1962).

    Google Scholar 

  89. Fleisch, H., F. Straumann, R. Schenk, S. Bisaz, andM. Allgöwer: Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture (im Druck).

  90. Fleisch, H., D. Schibler, J. Maerki, andI. Frossard: Inhibition of aortic calcification by means of pyrophosphate and polyphosphates. Nature (Lond.207, 1300–1301 (1965).

    Google Scholar 

  91. Cartier, P., etJ. Picard: La minéralisation du cartilage ossifiable. IV. La signification de la réaction ATPasique. Bull. Soc. Chim. biol. (Paris)37, 1169–1176 (1955).

    Google Scholar 

  92. Perkins, H. R., andP. G. Walker: The occurrence of pyrophosphate in bone. J. Bone Jt Surg. B40, 333–339 (1958).

    Google Scholar 

  93. Dulce, H. J.: Zur Biochemie der Verknöcherung. II. Enzymaktivitäten im hyalinen Knorpel, im verknöchernden Knorpel und im Knochen. Hoppe-Seylers Z. physiol. Chem.319, 272–278 (1960).

    Google Scholar 

  94. Dulce, H. J.: Zur Biochemie der Verknöcherung. III. Mineralgehalt, Grundsubstanz, -zusammensetzung und Enzymaktivitäten im Callusgewebe und in rachitischen Knochen von Ratten. Hoppe-Seylers Z. physiol. Chem.320, 1–10 (1960).

    Google Scholar 

  95. Fleisch, H.: Neue Gesichtspunkte der Kalkablagerung. Schweiz. med. Wschr.91, 858–861 (1961).

    Google Scholar 

  96. Fleisch, H.: Role of nucleation and inhibition in calcification. Clin. Orthop.32, 170–180 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleisch, H. Physiologie und Biochemie der Knochenbildung. Klin Wochenschr 44, 360–363 (1966). https://doi.org/10.1007/BF01745924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01745924

Navigation