Skip to main content
Log in

Long-term effects of nifedipine on carbohydrate and lipid metabolism in hypertensive hemodialyzed patients

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

To evaluate long-term effects of nifedipine on carbohydrate and lipid metabolism, 15 hypertensive patients undergoing regular hemodialysis treatment were investigated before nifedipine therapy, after 3 and 9 weeks, and 2 weeks after stopping nifedipine therapy. Three weeks following the administration of nifedipine, both glucose and insulin concentrations decreased significantly from 102.1±2.6 to 94.9±2.2 mg/dl and from 19.9±2.9 to 13.9±1.7 µU/ml and also remained significantly lower after 9 weeks of nifedipine therapy. This effect was paralleled by a fall of noradrenaline and dopamine. Glucagon levels remained constant. Glucose tolerance tests performed during nifedipine medication and 2 weeks after stopping of nifedipine therapy did not differ significantly. An increase of pyruvate, citric acid cycle intermediates, and ketone bodies — but not of lactate — was registered during nifedipine medication. The observed effects were not completely abolished after the 2-week placebo phase. Our data indicate that nifedipine lowers serum glucose values despite decreased insulin and constant glucagon levels in hypertensive hemodialyzed patients. Considering additionally the behavior of catecholamines and organic acids, the effects could be explained by the improvement of peripheral glucose utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BUN:

Blood urea nitrogen

PCA:

Perchloric acid

RDT:

Regular hemodialysis treatment

References

  1. Bhatnagar SK, Amin MM, Al-Ysuf AR (1984) Diabetogenic effects of nifedipine. Br Med J 289:19

    Google Scholar 

  2. Bonen A, Tam MH, Clune P, Kirby RL (1985) Effects of exercise on insulin binding to human muscle. Am J Physiol 248:E 403-E 408

    Google Scholar 

  3. Briggs JD, Buchanan KD, Luke RG, McKiddie MT (1967) Role of insulin in glucose intolerance in uraemia. Lancet I:462–464

    Google Scholar 

  4. Campese VM, Romoff MS, Levitan D, Lane K, Massry SG (1981) Mechanisms of autonomic nervous system dysfunction in uremia. Kidney Int 20:246–253

    Google Scholar 

  5. Charles S, Keterslegers JM, Buysschaert M, Lambert AE (1981) Hyperglycaemic effect of nifedipine. Br Med J 283:19–20

    Google Scholar 

  6. Christensen CK, Lederballe Pedersen O, Mikkelsen E (1982) Renal effects of acute calcium blockade with nifedipine in hypertensive patients receiving beta-adrenoreceptor blocking drugs. Clin Pharmacol Ther 32:572–576

    Google Scholar 

  7. Corea L, Bentivoglio M, Cosmi F, Alunm G, Carnovali M (1981) Nifedipine versus prazosine in essential hypertension: a double-blind study. Current Ther Res 30:708–711

    Google Scholar 

  8. De Champlain J, Farley L, Cousineau D, Van Ameringen HR (1976) Circulating catecholamine levels in human and experimental hypertension. Circ Res 38:109–114

    Google Scholar 

  9. DeFronzo RA, Andres R, Edgar P, Walker WG (1973) Carbohydrate metabolism in uremia: a review. Medicine 52:469–481

    Google Scholar 

  10. DeFronzo RA, Jordan DT, Rowe JW, Andres R (1978) Glucose intolerance in uremia. Quantification of pancreatic beta cell sensitivity to glucose and tissue sensitivity to insulin. J Clin Invest 62:425–435

    Google Scholar 

  11. DeFronzo RA, Smith D, Alvestrand A (1983) Insulin action in uremia. Kidney Int [Suppl] 16:102–114

    Google Scholar 

  12. Dietze GJ (1983) Inter-organ substrate flow. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition, Kleinberger G. Karger, Basel p 146

    Google Scholar 

  13. Dietze GJ, Maerker E, Lodri C, Schiffmann R, Wicklmayr M, Geiger R, Fink E, Boettger I, Fritz H, Mehnert H (1984) Possible involvement of kinines in muscle energy metabolism. In: Hörl WH, Heidland A (eds) Proteases: Potential role in health and disease. Plenum Press, New York p 63

    Google Scholar 

  14. Frisham W, Klein M, Beer N (1981) Nifedipine in hypertension. Arch Int Med 141:843

    Google Scholar 

  15. Giugliano D, Torella R, Cacciapuoti F, Gentile S, Verza M, Varricchi M (1980) Impairment of insulin secretion in man by nifedipine. Eur J Clin Pharmacol 18:395–398

    Google Scholar 

  16. Goldberg AP, Geltman EM, Hagberg JM, Gavin JR, Delmez JA, Carney RM, Naumowicz A, Oldfield MH, Herschel HR (1983) Therapeutic benefits of exercise training for hemodialysis patients. Kidney Int [Suppl] 16:303–309

    Google Scholar 

  17. Guazzi M, Olivari MT, Polese A, Fiorentini C, Magrini F, Moruzzi P (1977) Nifedipine, a new antihypertensive with rapid action. Clin Pharmacol Ther 22:528–532

    Google Scholar 

  18. Guazzi MD, Fiorentini C, Olivari MT, Bartorelli A, Necchi G, Polese A (1980) Short- and long-term efficacy of a calcium-antagonistic agent (nifedipine) combined with methyldopa in the treatment of severe hypertension. Circulation 61:913–917

    Google Scholar 

  19. Hennemann H, Hevendehl G, Horler E, Heidland A (1973) Toxic sympathicopathy in uraemia. Proc Eur Dial Transplant Assoc 10:166–170

    Google Scholar 

  20. Hörl WH, Stepinski J, Heidland A (1980) Carbohydrate metabolism and uraemia — mechanisms for glycogenolysis and gluconeogenesis. Klin Wochenschr 58:1051–1064

    Google Scholar 

  21. Hörl WH, Echsel E, Hohenegger M (1985) The key role of sex dependency on kidney citrate metabolism in the rat. Res Exp Med 185:69–75

    Google Scholar 

  22. Hörl WH, Haag M, Riegel W, Heidland A (1986) Effect of nifedipine on carbohydrate metabolism in the rat. Diabetes (submitted for publication)

  23. Joffe BI, Lamprey JM, Shires R, Baker S, Viljoen M, Seftel HC (1983) Lack of hormonal effects of a single dose of nifedipine in healthy young men. J Cardiovasc Pharmacol 5:700–702

    Google Scholar 

  24. Kuku SF, Jaspan JB, Emmanouel DS, Zeidler A, Katz AI, Rubenstein AH (1976) Heterogenity of plasma glucagon. Circulating components in normal subjects and patients with chronic renal failure. J Clin Invest 58:742–750

    Google Scholar 

  25. Kuwaijami I, Ueda K, Kamata C, Matsushita S, Kuramoto K, Murakami M, Hada Y (1978) A study on the effects of nifedipine in hypertensive crisies and severe hypertension. Jpn Heart J 19:455–467

    Google Scholar 

  26. Lederballe-Pedersen O, Mikkelsen E (1978) Acute and chronic effects of nifedipine in arterial hypertension. Europ J Clin Pharmacol 14:375–381

    Google Scholar 

  27. Malaisse WJ, Boschero AC (1977) Calcium antagonists and islet function. XI. Effect of nifedipine. Horm Res 8:203–209

    Google Scholar 

  28. Modan M, Halkin H, Almog S, Lusky A, Eshkkol A, Shefi M, Shitrit A, Fuchs Z (1985) Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 75:809–817

    Google Scholar 

  29. Mondon CE, Dolkas CB, Reaven GM (1978) The site of insulin resistance in acute uremia. Diabetes 27:571–576

    Google Scholar 

  30. Muiesan G, Agabiti-Rosei E, Castellano M, Alicandri CL, Corea L, Fariello R, Beschi M, Romanelli G (1982) Antihypertensive and humoral effects of verapamil and nifedipine in essential hypertension. J Cardiovasc Pharmacol 4 [Suppl 3]:325–309

    Google Scholar 

  31. Murakami M, Murakami E, Takekoshi N (1972) Antihypertensive effect of nifedipine, a new coronary dilator. Jpn Heart J 13:128–135

    Google Scholar 

  32. Olivari MT, Bartorelli C, Polese A, Fiorentini C, Moruzzi P, Guazzi MD (1979) Treatment of hypertension with nifedipine, a calcium antagonistic agent. Circulation 59:1056–1062

    Google Scholar 

  33. Peuler JD, Johnson GA (1977) Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci 21:625–636

    Google Scholar 

  34. Ratge D, Augustin R, Wisser H (1983) Catecholamines, renin, aldosterone and arterial pressure in patients on chronic hemodialysis treatment. Int J Artif Org 6:255–260

    Google Scholar 

  35. Romoff MS, Campese VM, Lane K, Massry SG (1978) Mechanism of autonomic dysfunction in uremia: evidence for reduced end organ response to norepinephrine (Abstract). Kidney Int 14:731

    Google Scholar 

  36. Rubenfeld S, Garber AJ (1978) Abnormal carbohydrate metabolism in chronic renal failure. J Clin Invest 62:20–28

    Google Scholar 

  37. Sherwin RS, Bastl C, Finkelstein FO, Fisher M, Black H, Hendler R, Felig P (1976) Influence of uremia and hemodialysis on the turnover and metabolic effects of glucagon. J Clin Invest 57:722–731

    Google Scholar 

  38. Thibonnier M, Corvol P, Banzet O, Menard J (1982) Acute antihypertensive and hormonal effects of a calcium antagonist in essential hypertension. J Cardiovasc Pharmacol 4 [Suppl 3]:335–339

    Google Scholar 

  39. Vater W, Kronenberg G, Hoffmeister F, Kaller H, Meng K, Oberdorf A, Puls W, Schlossmann K, Stoepel K (1972) Zur Pharmakologie von 4-(2′Nitrophenyl)-2,6-dimethyl-1,4-dihydropyridin-3,5-dicarbonsäure-dimethylester (Nifedipin, bay a 1040). Arzneimittelforsch 22:1–14

    Google Scholar 

  40. Vierhapper H, Waldhäusl W (1982) Reduced pressor effect of angiotensine II and of noradrenaline in normal man following the oral administration of the calcium-antagonist nifedipine. Eur J Clin Invest 12:263–267

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riegel, W., Hörl, W.H. & Heidland, A. Long-term effects of nifedipine on carbohydrate and lipid metabolism in hypertensive hemodialyzed patients. Klin Wochenschr 64, 1124–1130 (1986). https://doi.org/10.1007/BF01726873

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01726873

Key words

Navigation