Skip to main content

Advertisement

Log in

Angiotensin II receptor content within the subfornical organ and organum vasculosum lamina terminalis increases after experimental subarachnoid haemorrhage in rats

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Nests of cells within the central nervous system, namely the circumventricular organs (CVOs) which include the subfornical organ (SFO), organum vasculosum lamina terminalis (OVLT), area postrema (AP) and the median eminence (ME) are known to contain not only receptors for angiotensin II (ANG II) but also ANG II itself. Though the significance of this central ANG II network in the pathophysiology of certain conditions like hypertension is well established, there appears to be a lack of knowledge as to how this system might be involved after subarachnoid haemorrhage (SAH). In this study, we have investigated ANG II receptor content change at various circumventricular organs after experimental subarachnoid haemorrhage in rats using a transcervical transclivai model. ANG II receptor content was detected by in vivo autoradiography using intracisternal ANG II Sar 1, Ile 8 labelled with iodine (I) 125 both at 30 minutes and 48 hours after the SAH. Serum angiotensin converting enzyme activity was also detected during the time course reflecting the involvement of the peripheral angiotensin system and showed an early rise and a fall after two days. Immunohistochemistry was utilized to show the ANG II-containing cells within the circumventricular organs. SFO and OVLT were found to have a statistically significant increase in ANG II receptor content persisting over two days after the SAH. These alterations in the receptor content of CVOs may indicate their possible role in delayed ischaemic deficits seen after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry KJ, Gogjian MA, Stein BM (1979) Small animal model for investigation of subarachnoid hemorrhage and cerebral vasospasm. Stroke 10: 538–541

    PubMed  Google Scholar 

  2. Bennett J, Snyder SH (1980) Receptor binding interactions of the angiotensin II antagonist, I-125 (Sarcosine 1, Leucine 8) angiotensin II, with mammalian brain and peripheral tissues. Eur J Pharmacol 67: 11–25

    PubMed  Google Scholar 

  3. Bennett JP, Snyder SH (1976) Angiotensin II binding to mammalian brain membranes. J Biol Chem 251: 7423–7430

    PubMed  Google Scholar 

  4. Berney J (1986) Subarachnoid hemorrhage. Clinical evaluation and natural history. Presented at 3rd EANS Course, Porto, Portugal, September 6–12

  5. Borison HL (1984) History and status of the area postrema. Federation Proceedings 43: 2937–2940

    PubMed  Google Scholar 

  6. Brownfield MS, Reid LA, Ganten D,et al (1982) Differential distribution of immunoreactive angiotensin and angiotensine converting enzyme in rat brain. Neuroscience 7: 1759–1769

    PubMed  Google Scholar 

  7. Brunner H, Chang P, Wallach,et al (1972) Angiotensin II vascular receptors. Their avidity in relationship to sodium balance, the autonomic nervous system and hypertension. J Clin Invest 51: 58–67

    PubMed  Google Scholar 

  8. Changaris DG, Severs WB, Keil LC (1978) Localization of angiotensin in rat brain. J Histochem Cytochem 26: 593–607

    PubMed  Google Scholar 

  9. Delgado TJ, Brismar J, Svendgaard NA (1985) Subarachnoid hemorrhage in the rat. Angiography and flourescence microscopy of the major cerebral arteries. Stroke 16: 595–601

    PubMed  Google Scholar 

  10. Editorial in Ganong WF, Martini L (eds) (1990) Frontiers in Neuroendocrinology, vol 11. Raven, New York, pp 1–5

    Google Scholar 

  11. Edvinsson L, Uddman R, Juul R (1990) Peptidergic innervation of the cerebral circulation. Role in subarachnoid hemorrhage in man. Neurosurg Rev 13: 265–272

    PubMed  Google Scholar 

  12. Ferguson AV, Kasting NW (1986) Electrical stimulation in subfornical organ increases plasma vasopressin concentrations in the conscious rat. Am J Physiol 251: R425–428

    PubMed  Google Scholar 

  13. Gavras H, Andrews P, Papadakis N (1981) Reversal of experimental delayed cerebral vasospasm by angiotensin converting enzyme inhibition. J Neurosurg 55: 884–888

    PubMed  Google Scholar 

  14. Harding JW, Stone LP, Wright JW (1981) The distribution of angiotensin binding sites in the rodent brain. Brain Res 205: 265–274

    PubMed  Google Scholar 

  15. Haywood JP, Fink GD, Buggy J,et al (1980) The area postrema plays no role in the pressor action of angiotensin in the rat. Am J Physiol 239: H108–113

    Google Scholar 

  16. Heros RC, Zervas NT, Varsos V (1983) Cerebral vasospasm after subarachnoid hemorrhage and update. Ann Neurol 14: 599–608

    PubMed  Google Scholar 

  17. Israel A, Correa FMA, Niwa M,et al (1984) Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography. Brain Res 322: 341–345

    Google Scholar 

  18. Kassell NF, Sasaki T, Colohan ART (1985) Cerebral vasospasm following aneurysm subarachnoid hemorrhage. Stroke 16: 562–572

    PubMed  Google Scholar 

  19. Lind RW, Swanson LW, Ganten D (1985) Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. Neuroendocrinology 40: 2–24

    PubMed  Google Scholar 

  20. Mangiapane ML, Simpson JB (1980) Subfornical organ: forebrain site of pressor and dipsogenic action of angiotensin II. Am J Physiol 239: R382–389

    PubMed  Google Scholar 

  21. Mann JFE, Johnson AK, Ganten D (1980) Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol 238: R372–377

    PubMed  Google Scholar 

  22. Nazarali AJ, Gutkind JS, Correa FMA,et al (1989) Enapril decreases angiotensin II receptors in subfornical organ of SHR. Am J Physiol 256: H1609–1614

    PubMed  Google Scholar 

  23. Neil-Dwyer G, Cruickshank JM, Doshi R (1990) The stress response in subarachnoid hemorrhage. Acta Neurochir (Wien) [Suppl] 47: 102–110

    Google Scholar 

  24. Phillips MI, Stamler JF, Raizada MK (1980) Visualization of specific angiotensin II binding sites in the brain by fluorescent microscopy. Science 210: 791–793

    PubMed  Google Scholar 

  25. Quinlan JT, Phillips MI (1981) Immunoreactivity for an angiotensin II-like peptide in the human brain. Brain Res 205: 212–218

    PubMed  Google Scholar 

  26. Ray PE, Ruley EJ, Saavedra JM (1990) Down-regulation of angiotensin receptors in subfornical organ of young male rats chronic dietary sodium depletion. Brain Res 510: 303–308

    PubMed  Google Scholar 

  27. Robertson AL, Khariallah PA (1971) Angiotensin II: rapid localization in nuclei of smooth cardiac muscle. Science 172: 1138–1139

    PubMed  Google Scholar 

  28. Severs WB, Summy-Long JY, Taylor CS,et al (1970) A central effect of angiotensin: release of a pituitary pressor material. J Pharmacol Exp Ther 174: 27–34

    PubMed  Google Scholar 

  29. Sirett NE, McLean AS, Bray JJ,et al (1977) Distribution of angiotensin receptors in rat brain. Brain Res 122: 299–312

    PubMed  Google Scholar 

  30. Sirett NE, Thornton SN, Hubbard JI (1979) Angiotensin binding and pressor activity in the rat ventricular system and midbrain. Brain Res 166: 139–148

    PubMed  Google Scholar 

  31. Spetzler RF, Selman WR (1980) New design for an implantable vessel occluder. Surg Neurol 13: 317–319

    PubMed  Google Scholar 

  32. Svendgaard N (1988) Discussion on anterior circulation aneurysm. In: Suzuki J (ed) Advances in surgery for cerebral stroke. Springer, Tokyo, p 299

    Google Scholar 

  33. Verlooy J, Reempts JV, Haseldonckx M,et al (1992) Haemodynamic, intracranial pressure and electrocardiographic changes following subarachnoid hemorrhage in rats. Acta Neurochir (Wien) 115: 118–122

    Google Scholar 

  34. Weindl A (1973) Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology, vol 3. Oxford University Press, London, pp 3–32

    Google Scholar 

  35. Weindl A, Joynt RJ (1973) Subcommissural organ. Arch Neurol 29: 17–22

    Google Scholar 

  36. Weindl A, Joynt RJ (1972) Ultrastructure of the ventricular walls. Arch Neurol 26: 420–427

    PubMed  Google Scholar 

  37. Wright JW, Harding JW (1992) Regulatory role of brain angiotensins in the control of physiological and behavioral responses. Brain Res Brain Res Rev 17: 227–262

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Açikgöz, B., Özgen, T., Özdoğan, F. et al. Angiotensin II receptor content within the subfornical organ and organum vasculosum lamina terminalis increases after experimental subarachnoid haemorrhage in rats. Acta neurochir 138, 460–465 (1996). https://doi.org/10.1007/BF01420309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01420309

Keywords

Navigation