Skip to main content
Log in

Plasma tyrosine in normal humans: Effects of oral tyrosine and protein-containing meals

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

To test the effects of tyrosine ingestion and concurrent food consumption on plasma tyrosine levels and on the plasma tyrosine ratio, we measured plasma neutral amino acid levels in 11 subjects who consumed a diet containing 113 g protein and who also took 100 mg/kg/day of L-tyrosine (in three equally divided doses) before meals. Plasma tyrosine levels rose significantly (p<0.025) during the day when subjects consumed the diet alone; they increased markedly after tyrosine ingestion (p<0.005). Tyrosine administration did not affect plasma concentrations of the other neutral amino acids that compete with tyrosine for entry into the brain. Thus, the plasma tyrosine ratio increased from 0.13 to 0.21 (p<0.001) on the day fed subjects received the tyrosine. These observations indicate that tyrosine administration might increase brain tyrosine levels and perhaps accelerate catecholamine synthesis in humans with diseases in which catecholamine synthesis or release is deficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bloxam, D. L., Warren, W. H. Error in the determination of tryptophan by the method of Denckla and Dewey. Anal. Biochem.60, 621–625 (1974).

    Google Scholar 

  • Delean, J., Richardson, J. C., Hornykiewicz, O. Beneficial effects of serotonin precursors on postanoxic action myoclonus. Neurology26, 863–868 (1976).

    Google Scholar 

  • Denckla, W. D., Dewey, H. K. Determination of tryptophan in plasma, liver and urine. J. Lab. Clin. Med.69, 160–169 (1967).

    Google Scholar 

  • Fernstrom, J. D., Faller, D. V. Neutral amino acids in the brain: changes in response to food ingestion. J. Neurochem.30, 1531–1538 (1978).

    Google Scholar 

  • Fernstrom, J. D., Larin, F., Wurtman, R. J. Correlations between brain tryptophan and plasma neutral amino acid levels following food consumption in rats. Life Sci.13, 517–524 (1973).

    Google Scholar 

  • Fernstrom, J. D., Wurtman, R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science173, 149–152 (1971 a).

    Google Scholar 

  • Fernstrom, J. D., Wurtman, R. J. Brain serotonin content: increase following ingestion of carbohydrate diet. Science174, 1023–1025 (1971 b).

    Google Scholar 

  • Fernstrom, J. D., Wurtman, R. J., Hammarstrom-Wiklund, B., Rand, W. M., Munro, H. N., Davidson, C. S. Diurnal variations in plasma concentrations of tryptophan, tyrosine and other neutral amino acids: effect of dietary protein intake. Am. J. Clin. Nutr.32, 1912–1922 (1979).

    Google Scholar 

  • Gibson, C. J., Wurtman, R. J. Physiological control of brain catechol synthesis by brain tyrosine concentration. Biochem. Pharmacol.26, 1137–1142 (1977).

    Google Scholar 

  • Gibson, C. J., Wurtman, R. J. Physiological control of brain norepinephrine synthesis by brain tyrosine concentration. Life Sci.22, 1399–1406 (1978).

    Google Scholar 

  • Glaeser, B. S., Melamed, E., Growdon, J. H., Wurtman, R. J. Elevation of plasma tyrosine levels after a single load of L-tyrosine. Life Sci.25, 265–272 (1979).

    Google Scholar 

  • Hartmann, E. L-tryptophan: effects on sleep. Monogr. Neural Sci.3, 26 to 32 (1976).

    Google Scholar 

  • Lehman, J. Light—a source of error in the fluorimetric determination of tryptophan. Scand. J. Lab. Invest.28, 49–55 (1971).

    Google Scholar 

  • Maas, J. W. Biogenic amines and depression—biochemical and pharmacological separation of two types of depression. Arch. Gen. Psychiatry32, 1357–1361 (1975).

    Google Scholar 

  • Mendels, J., Stinnett, J. L., Burns, D., Frazer, A. Amine precursors and depression. Arch. Gen. Psychiatry32, 22–30 (1975).

    Google Scholar 

  • Scally, M. C., Ulus, I., Wurtman, R. J. Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. J. Neural Transm.41, 1–6 (1977).

    Google Scholar 

  • Waalkes, T. P., Udenfriend, S. A fluorimetric method for estimation of tyrosine in plasma and tissues. J. Lab. Clin. Med.50, 733–736 (1957).

    Google Scholar 

  • Wurtman, R. J. Diurnal rhythms in mammalian protein metabolism. In: Mammalian Protein Metabolism (Munro, H. N., ed.), Vol. 4, pp. 445 to 479, New York: Academic Press. 1970.

    Google Scholar 

  • Wurtman, R. J., Larin, F., Mostafapour, S., Fernstrom, J. D. Brain catechol synthesis: control by brain tyrosine concentration. Science185, 183 to 184 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melamed, E., Glaeser, B., Growdon, J.H. et al. Plasma tyrosine in normal humans: Effects of oral tyrosine and protein-containing meals. J. Neural Transmission 47, 299–306 (1980). https://doi.org/10.1007/BF01247323

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01247323

Keywords

Navigation