Skip to main content
Log in

Distribution of DARPP-32 in the basal ganglia: an electron microscopic study

  • Published:
Journal of Neurocytology

Summary

DARPP-32, a dopamine and cyclic AMP-regulated phosphoprotein, has been studied by light and electron microscopical immunocytochemistry in the rat caudatoputamen, globus pallidus and substantia nigra. In the caudatoputamen, DARPP-32 was present in neurons of the medium-sized spiny type. Immunoreactivity for DARPP-32 was present in dendritic spines, dendrites, perikaryal cytoplasm, most but not all nuclei, axons and a small number of axon terminals. Immunoreactive axon terminals in the caudatoputamen formed symmetrical synapses with immunolabelled dendritic shafts or somata. Neurons having indented nuclei were never immunoreactive. In the globus pallidus and substantia nigra pars reticulata, DARPP-32 was present in myelinated and unmyelinated axons and in axon terminals. The labelled axon terminals in these regions formed symmetrical synaptic contacts on unlabelled dendritic shafts or on unlabelled somata. These data suggest that DARPP-32 is present in striatal neurons of the medium-sized spiny type and that these DARPP-32-immunoreactive neurons form symmetrical synapses on target neurons in the globus pallidus and substantia nigra. The presence of DARPP-32 in these striatal neurons and in their axon terminals suggests that DARPP-32 mediates part of the response of medium-size spiny neurons in the striaturn to dopamine D-l receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariano, M. A. (1984) Rat striatal cyclic nucleotide-reactive cells and acetylcholinesterase reactive interneurons are separate populations.Brain Research 296, 160–3.

    Google Scholar 

  • Ben-Ari, Y., Pradelles, P., Oros, C. &Dray, F. (1979) Identification of authentic substance P in striatonigral and amygdaloid nuclei using combined high performance ligand chromatography and radioimmunoassay.Brain Research 173, 360–3.

    Google Scholar 

  • Bishop, G. A., Chang, H. T. &Kitai, S. T. (1982) Morphological and physiological properties of neostriatal neurons: An intracellular horseradish peroxidase study in the rat.Neuroscience 7, 179–91.

    Google Scholar 

  • Bolam, J. P., Freund, T. P., Hammond, D. J., Smith, A. D. &Somogyi, P. (1982) Morphological characterizations of (3H)GABA accumulating neurons in the rat neostriatum by golgi-staining and electron microscopy.British Journal of Pharmacology 75, 46P.

    Google Scholar 

  • Bolam, J. P., Somogyi, P., Takagi, H., Fodor, I. &Smith, A. D. (1983) Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study.Journal of Neurocytology 12, 325–44.

    Google Scholar 

  • Bolam, J. P., Wainer, G. H. &Smith, A. D. (1984) Characterizations of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnating and electron microscopy.Neuroscience 12, 711–18.

    Google Scholar 

  • Brann, M. R. &Emson, P. C. (1980) Microionophoretic injection of fluorescent tracer combined with simultaneous immunofluorescent histochemistry for the demonstration of efferents from the caudate-putamen projecting to the globus pallidus.Neuroscience Letters 16, 61–65.

    Google Scholar 

  • Brownstein, M. J., Mroz, E. A., Tappaz, M. L. &Leeman, S. E. (1977) On the origin of substance P and glutamic acid decarboxylase (GAD) in the substantia nigra.Brain Research 135, 315–23.

    Google Scholar 

  • Chang, H. T. (1988) Dopamine-acetylcholine interaction in the rat striatum: A dual-labelling immunocytochemical study.Brain Research Bulletin 21, 295–304.

    Google Scholar 

  • Chang, H. T. &Kitai, S. T. (1982) Large neostriatal neurons in the rat: An electron microscopic study of gold-toned Golgi-stained cells.Brain Research Bulletin 8, 631–43.

    Google Scholar 

  • Chang, H. T., Wilson, C. J. &Kitai, S. T. (1981) Single neostriatal efferent axons in the globus pallidus: A light and electron microscopic study.Science 213, 915–18.

    Google Scholar 

  • Cheramy, A., Leviel, V. &Glowinski, J. (1981) Dendritic release of dopamine in the substantia nigra.Nature 289, 537–42.

    Google Scholar 

  • Correa, F. M. A., Innis, R. B., Hester, L. D. &Snyder, H. (1981) Diffuse enkephalin innervation from caudate to globus pallidus.Neuroscience Letters 25, 63–8.

    Google Scholar 

  • Cuello, A. C. &Kanazawa, I. (1978) The distribution of substance P-immunoreactive fibres in the rat central nervous system.Journal of Comparative Neurology 178, 129–56.

    Google Scholar 

  • Cuello, A. C. &Paxinos, G. (1978) Evidence for a long leu-enkephalin striopallidal pathway in rat brain.Nature 271, 178–80.

    Google Scholar 

  • Del Fiacco, M., Paxinos, G. &Cuello, A. C. (1982) Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus.Brain Research 231, 1–17.

    Google Scholar 

  • Difiglia, M., Aronin, N. &Martin, J. B. (1982) Light and electron microscopic localization of immunoreactive Leuenkephalin in the monkey basal ganglia.Journal of Neuroscience 2, 303–20.

    Google Scholar 

  • Difiglia, M., Pasik, P. &Pasik, T. (1976) A Golgi study of neuronal types in the neostriatum of monkeys.Brain Research 114, 245–56.

    Google Scholar 

  • Difiglia, M., Pasik, P. &Pasik, T. (1980) Ultrastructure of Golgi-impregnated and gold-toned spiny and aspiny neurons in the monkey neostriatum.Journal of Neurocytology 9, 471–92.

    Google Scholar 

  • Dimova, R., Vuillet, J. &Seite, R. (1980) Study of the rat neostriatum using a combined Golgi-electron microscope technique and serial sections.Neuroscience 5, 1581–96.

    Google Scholar 

  • Elde, R., Hökfelt, T., Johansson, O. &Terenius, L. (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat.Neuroscience 1, 349–51.

    Google Scholar 

  • Fonnum, F., Gottesfeld, Z. &Grofova, I. (1978) Distribution of glutamate decarboxylase, choline acetyltransferase and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence of striatopallidal, striatoentopeduncular and striatonigral gabaergic fibres.Brain Research 143, 125–38.

    Google Scholar 

  • Fonnum, F., Grofova, I., Rinvik, E., Storm-Mathisen, J. &Walberg, F. (1974) Origin and distribution of glutamate decarboxylase in substantia nigra of the cat.Brain Research 71, 77–92.

    Google Scholar 

  • Fonnum, F., Walaas, I. &Iversen, L. (1977) Localization of GABAergic, cholinergic and aminergic structures in the mesolimbic system.Journal of Neurochemistry 29, 221–30.

    Google Scholar 

  • Fox, C. A., Andrade, A., Hillman, D. E. &Schwyn, R. C. (1972) The spiny neurons in primate striatum: a Golgi and electron microscopic study.Journal für Hirnforschung 13, 181–201.

    Google Scholar 

  • Fox, C. A., Lu Qui, I. J. &Rafols, J. A. (1974) Further observations on Ramon y Cajal's ‘dwarf’ or ‘neurogliaform’ neurons and the oligodendroglia in the primate striatum.Journal für Hirnforschung 15, 517–527.

    Google Scholar 

  • Freund, T. F., Powell, J. F. &Smith, A. D. (1984) Tyrosine hydroxylase immunoreactive boutons in synaptic contact with identified striatonigral neurons with particular reference to dendritic spines.Neuroscience 13, 1189–1215.

    Google Scholar 

  • Gale, K., Guidotti, A. &Costa, E. (1977) Dopaminesensitive adenylate cyclase: localization in the substantia nigra.Science 195, 503–5.

    Google Scholar 

  • Geffen, L. B., Jessell, T. M., Cuello, A. C. &Iversen, L. L. (1976) Release of dopamine from dendrites in rat substantia nigra.Nature 260, 258–60.

    Google Scholar 

  • Goto, S., Matsukado, Y., Miyamoto, E. &Yamada, M. (1987) Morphological characterization of the rat striatal neurons expressing calcineurin immunoreactivity.Neuroscience 22, 189–201.

    Google Scholar 

  • Graybiel, A. M. &Ragsdale, C. W., Jr (1983) Biochemical anatomy of the striatum. InChemical Neuroanatomy (edited byEmson, P. C.) pp. 427–504. New York: Raven Press.

    Google Scholar 

  • Haber, S. N. &Watson, S. J. (1985) The comparative distribution of enkephalin, dynorphin and substance P in the human globus pallidus and basal forebrain.Neuroscience 14, 1011–24.

    Google Scholar 

  • Hattori, T., Mcgeer, P. L., Fibiger, H. C. &McGeer, E. G. (1973) On the source of GAB A-containing terminals in the substantia nigra. Electron microscopic autoradiographic and biochemical studies.Brain Research 54, 103–14.

    Google Scholar 

  • Hemmings, H. C., Jr, Greengard, P., Lim Tung, H. Y. &Cohen, P. (1984a) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1.Nature 310, 503–8.

    Google Scholar 

  • Hemmings, H. C., Jr, Nairn, A. C., Aswad, D. W. &Greengard, P. (1984b) DARPP-32, a dopamine- and adenosine 3′∶5′-monophosphate-regulated phosphoprotein enriched in dopamine innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus.Journal of Neuroscience 4, 99–110.

    Google Scholar 

  • Hong, J. S., Yang, H. -Y. T., Racagni, G. &Costa, E. (1977) Projections of substance P containing neurons from neostriatum to substantia nigra.Brain Research 122, 541–4.

    Google Scholar 

  • Ingebristen, T. S., Foulkes, J. G. &Cohen, P. (1983) The protein phosphatases involved in cellular regulation: II. Glycogen metabolism.European Journal of Biochemistry 132, 263–74.

    Google Scholar 

  • Iversen, L. L., Iversen, S. D., Bloom, F. E., Vargo, T. &Guillemin, R. (1978) Release of enkephalin from rat globus pallidusin vitro.Nature 271, 679–681.

    Google Scholar 

  • Izzo, P. N., Grabiel, A. M. &Bolam, J. P. (1987) Characterization of substance P- and [Met]enkephalinimmunoreactive neurons in the caudate nucleus of the cat and ferret by a single section Golgi procedure.Neuroscience 20, 577–87.

    Google Scholar 

  • Jessell, T. M., Emson, P. C., Paxinos, G. &Cuello, A. C. (1978) Topographic projections of substance-P and GABA pathways in the striato- and palado-nigral systems: A biochemical and immunohistochemical study.Brain Research 152, 487–98.

    Google Scholar 

  • Kanazawa, I., Emson, P. C. &Cuello, A. C. (1977) Evidence for the existence of substance P-containing fibres in striato-nigral and pallido-nigral pathways in rat brain.Brain Research 119, 447–53.

    Google Scholar 

  • Kanazawa, I., Mogaki, S., Muramoto, O. &Kuzuhara, S. (1980) On the origin of substance P-containing fibres in the entopeduncular nucleus and substantia nigra of the rat.Brain Research 184, 481–5.

    Google Scholar 

  • Kamaoka, K., Bak, I. J., Hassler, R., Kim, J. S. &Wagner, A. (1974) L-Glutamate decarboxylase and choline acetyltransferase activity in substantia nigra and striatum after surgical interruption of strio-nigral fibres of the baboon.Experimental Brain Research 19, 217–27.

    Google Scholar 

  • Kebabian, J. W. &Caene, D. B. (1979) Multiple receptors for dopamine.Nature 277, 93–6.

    Google Scholar 

  • Kemp, J. M. &Poweel, T. P. S. (1971) The site of termination of afferent fibres in the caudate nucleus.Philosophical Transactions of the Royal Society of London B 262, 413–27.

    Google Scholar 

  • Kim, J. S., Bak, I. J., Hassler, R. &Okada, Y. (1971) Role of gamma-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strionigral neuron.Experimental Brain Research 14, 95–104.

    Google Scholar 

  • Kimura, H., Mcgeer, P. L., Peng, J. H. &McGeer, E. G. (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunocytochemistry.Science 208, 1057–9.

    Google Scholar 

  • Kimura, H., McGeer, P. E., Peng, J. H. &McGeer, E. G. (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat.Journal of Comparative Neurology 200, 151–201.

    Google Scholar 

  • King, M. M., Huang, C. Y., Chock, P. B., Nairn, A. C., Hemmings, H. C., Jr, Chan, K. -F. J. &Greengard, P. (1984) Mammalian brain phosphoproteins as substrates for calcineurin.Journal of Biological Chemistry 259, 8080–3.

    Google Scholar 

  • Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F. &Tohyama, M. (1987) Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons.Brain Research 413, 179–84.

    Google Scholar 

  • Levey, A. I., Wainer, B. H., Mufson, E. J. &Mesueam, M. M. (1983) Colocalization of choline acetyltransferase and acetylcholinesterase in rat cerebrum.Neuroscience 9, 9–22.

    Google Scholar 

  • Ljungdahl, A., Hökfeet, T., Nilsson, G. &Goldstein, M. (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat II. Light microscopic localization in relation to catecholaminecontaining neurons.Neuroscience 3, 945–76.

    Google Scholar 

  • Mensah, P. E. &Deadwyeer, S. (1974) The caudate nucleus of the rat: Cell types and the demonstration of a commissural system.Journal of Anatomy 177, 281–93.

    Google Scholar 

  • Mori, S. (1966) Some observations on the fine structure of the corpus striatum of the rat brain.Zeitschrift für Zellforschung und Mikroskopische Anatomie 70, 461–88.

    Google Scholar 

  • Murrin, E. C., Gaee, K. &Kuhar, M. J. (1979) Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: Effects of lesions.European Journal of Pharmacology 60, 229–35.

    Google Scholar 

  • Mroz, E. A., Brownstein, M. J. &Leeman, S. E. (1977) Evidence for substance P in the striatonigral tract.Brain Research 125, 305–11.

    Google Scholar 

  • Nagai, T., Mcgeer, P. E. &McGeer, E. G. (1983) Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain.Journal of Comparative Neurology 218, 220–38.

    Google Scholar 

  • Nagy, J. I., Carter, D. A. &Fibiger, H. C. (1978) Anterior striatal projections to the globus pallidus, entopeduncular nucleus and substantia nigra in the rat. The GABA connection.Brain Research 158, 15–29.

    Google Scholar 

  • Ouimet, C. C. (1988) Cerebrocortical neurons containing DARPP-32, a dopamine- and adenosine 3′∶5′-monophosphate-regulated phosphoprotein. InNeurotransmitters and Cortical Function: From Molecules to Mind (edited byAvoei, M., Reader, T. A., Dykes, R. W. &Geoor, P.) pp. 357–72. New York: Plenum Press.

    Google Scholar 

  • Ouimet, C. C., Miller, P. E., Hemmings, H. C., Jr, Walaas, S. I. &Greengard, P. (1984) DARPP-32, A dopamine- and adenosine 3′∶5′-monophosphateregulated phosphoprotein enriched in dopamineinnervated brain regions. III. Immunocytochemical localization.Journal of Neuroscience 4, 111–24.

    Google Scholar 

  • Pasik, P., Pasik, T. &Difiglia, M. (1979) The internal organization of the neostriatum in mammals. InThe Neostriatum (edited byDivac, I. &Oberg, R. G. E.) pp. 5–36. New York: Pergamon Press.

    Google Scholar 

  • Paekovits, M., Mroz, E. A., Brownstein, M. J. &Leeman, S. E. (1978) Descending substance-P-containing pathway: a component of the ansa lenticularis.Brain Research 156, 124–8.

    Google Scholar 

  • Paxinos, G., Emson, P. C. &Cuello, A. C. (1978) Substance P projections to the entopeduncular nucleus, the medial preoptic area and the lateral septum.Neuroscience Letters 7, 133–6.

    Google Scholar 

  • Penny, G. R., Afsharpour, S. &Kitai, S. T. (1986) The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: Evidence for partial population overlap.Neuroscience 17, 1011–45.

    Google Scholar 

  • Pickel, V. M., Summae, K. K., Beckley, S. C. &Rets, D. J. (1980) Immunocytochemical localization of enkephalin in the neostriatum of rat brain: a light and electron microscopic study.Journal of Comparative Neurology 189, 721–40.

    Google Scholar 

  • Preston, R. J., Bishop, G. A. &Kitai, S. T. (1980) Medium spiny neuron projection from the rat striatum: An intracellular horseradish peroxidase study.Brain Research 183, 253–63.

    Google Scholar 

  • Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R. &Roberts, E. (1976) Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra.Brain Research 116, 287–98.

    Google Scholar 

  • Satoh, K., Staines, W. A., Atmadja, S. &Fibiger, H. C. (1983) Ultrastructural observations of the cholinergic neuron in the rat striatum as identified by acetylcholinesterase pharmacohistochemistry.Neuroscience 10, 1121–36.

    Google Scholar 

  • Sofroniew, M. V., Eckenstein, F., Thoenen, H. &Cueeeo, A. C. (1982) Topography of choline acetyltransferase-containing neurons in the forebrain of the rat.Neuroscience Letters 33, 7–12.

    Google Scholar 

  • Somogyi, P., Bolam, J. P. &Smith, A. D. (1981) Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transportdegeneration procedure.Journal of Comparative Neurology 195, 567–84.

    Google Scholar 

  • Somogyi, P., Priestley, J. V., Cuello, A. C., Smith, A. D. &Takagi, H. (1982a) Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study.Journal of Neurocytology 11, 779–807.

    Google Scholar 

  • Somogyi, P., Priesteey, J. V., Cuello, A. C., Smith, A. D. &Bolam, J. P. (1982b) Synaptic connections of substance P-immunoreactive nerve terminals in the substantia nigra of the rat.Cell and Tissue Research 223, 469–86.

    Google Scholar 

  • Somogyi, P. &Smith, A. D. (1979) Projection of neostriatal spiny neurons to the substantia nigra. Application of combined Golgi-staining and horseradish peroxidase transport procedure at both light and electron microscopic levels.Brain Research 178, 3–15.

    Google Scholar 

  • Staines, W. A., Nagy, J. I., Vincent, S. R. &Fibiger, H. C. (1980) Neurotransmitters contained in the efferents of the striatum.Brain Research 194, 391–402.

    Google Scholar 

  • Takagi, H., Somogyi, P., Somogyi, J. &Smith, A. D. (1983) Fine structural studies on a type of somatostatinimmunoreactive neuron and its synaptic connections in the rat neostriatum: a correlated light and electron microscopic study.Journal of Comparative Neurology 214, 1–16.

    Google Scholar 

  • Walaas, S. I., Aswad, D. W. &Greengard, P. (1983) A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions.Nature 301, 69–71.

    Google Scholar 

  • Walaas, S. I. &Greengard, P. (1984) Darpp-32, a dopamine and adenosine 3′∶5′-monophosphateregulated phosphoprotein enriched in dopamine innervated brain regions. I. Regional and cellular distribution in rat brain.Journal of Neuroscience 4, 84–98.

    Google Scholar 

  • Williams, M. N. &Faull, R. L. M. (1985) The striatonigral projection and nigrotectal neurons in the rat. A correlated light and electron microscopic study demonstrating a monosynaptic striatal input to identified nigrotectal neurons using a combined degeneration and horseradish peroxidase procedure.Neuroscience 14, 991–1010.

    Google Scholar 

  • Williams, K. R., Hemmings, H. C., Jr, Lopresti, M. B., Konigsberg, W. H. &Greengard, P. (1986) DARPP-32, a dopamine- and cyclic AMP-regulated neuronal phosphoprotein. Primary structure and homology with protein phosphatase inhibitor-1.Journal of Biological Chemistry 261, 1890–903.

    Google Scholar 

  • Willingham, M. C. (1983) An alternative fixation-processing method for preembedding ultrastructural immunocytochemistry of cytoplasmic antigens.Journal of Histochemistry and Cytochemistry 31, 791–8.

    Google Scholar 

  • Wilson, C. J. &Groves, P. M. (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase.Journal of Comparative Neurology 194, 599–615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouimet, C.C., Greengard, P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J Neurocytol 19, 39–52 (1990). https://doi.org/10.1007/BF01188438

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01188438

Keywords

Navigation