Skip to main content
Log in

Dopamine and serotonin in rat striatum duringin vivo hypoxic-hypoxia

  • Original Contributions
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Dopamine and serotonin were determined in extracellular fluid of rat striatum by semiderivativein vivo voltammetry during normoxia and a single or repeated exposure to 15% O2 (i.e., mild hypoxia) or 12.5% O2 (i.e., moderate hypoxia). A single exposure to 15% oxygen increased extracellular dopamine 76%. With reintroduction of air to the animals, dopamine values returned to baseline. During a second episode of 15% oxygen, dopamine increased 63% and remained elevated even during a final exposure to air. On the other hand, serotonin was unaffected by 15% oxygen. Moderate hypoxia (12.5% oxygen) increased dopamine (79%) and serotonin (26%) and both remained elevated even after the initial reintroduction of air. These studies demonstrate thatin vivo hypoxia increases rat striatal extracellular dopamine and, to a lesser extent, extracellular serotonin. Furthermore, after repeated, mild hypoxic episodes or moderate hypoxia, the increases in rat striatal extracellular dopamine and serotonin continue even during normoxia. These studies further support a role for dopamine and serotonin in hypoxic-induced changes in brain function. The hypoxic-induced elevation of these two neurotransmitters during normoxia may be important in the production of hypoxic/ischemic-induced cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman, P. L. (1961). In D. S. Dittman; (ed.),Blood and Other Body Fluids, Fed. Am. Soc. Exp. Biol., Washington, D.C., p. 186.

    Google Scholar 

  • Biggio, G., Casu, M., Corda, M. G., Dibello, C., and Gessa, G. L. (1978). Stimulation of dopamine synthesis in caudate nucleus by intrastriatal enkephalins and antagonism by naloxone.Science 200: 552–554.

    Google Scholar 

  • Broderick, P. A. (1986). Rat striatal dopamine release mechanisms of cocaine. In Holaday, J. W., Law, P. Y., and Herz, A. (eds.),Progress in Opioid Research, National Institute on Drug Abuse Monograph 75, pp. 367–370.

  • Broderick, P. A. (1987). Striatal neurochemistry of dynorphin-(1–13):In vivo electrochemical semi-differential analyses.Neuropeptides 10: 369–386.

    Google Scholar 

  • Broderick, P. A. (1988). Distinguishingin vitro electrochemical signatures for norepinephrine and dopamine.Neurosci. Lett. 95: 275–280.

    Google Scholar 

  • Broderick, P. A. (1989). Characterizing stearate probesin vitro for the electrochemical detection of dopamine and serotonin.Brain Res. (in press).

  • Brown, R. M., Snider, S. R., and Carlsson, A. (1974). Changes in biogenic amine synthesis and turnover induced by hypoxia and or foot shock stress. II. The central nervous system.J. Neural. Transm. 35: 293–305.

    Google Scholar 

  • Brown, R. M., Kehr, W., and Carlsson, A. (1975). Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia.Brain Res. 85: 491–509.

    Google Scholar 

  • Clemens, J. A., and Phebus, L. A. (1988). Dopamine depletion protects striatal neurons from ischemia-induced cell death.Life Sci. 42: 707–713.

    Google Scholar 

  • Davis, J. N., and Carlsson, A. (1973). Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanesthetized rat brain.J. Neurochem. 20: 913–915.

    Google Scholar 

  • Diament, M. L., and Palmer, K. N. V. (1966). Postoperative changes in gas tensions of arterial blood and ventilatory function.Lancet 2: 180.

    Google Scholar 

  • Freeman, G. B., and Gibson, G. E. (1986). Effect of decreased oxygen onin vitro release of endogenous dopamine from mouse striatum.J. Neurochem. 47: 1924–1931.

    Google Scholar 

  • Freeman, G. B., Nielsen, P., and Gibson, G. E. (1986). Monoamine neurotransmitter metabolism and locomotor activity during chemical hypoxia.J. Neurochem. 46: 733–738.

    Google Scholar 

  • Gibson, G. E., Peterson, C., and Sansone, J. (1981). Decreases in amino acid and acetylcholine metabolism during hypoxia.J. Neurochem. 37: 192–201.

    Google Scholar 

  • Globus, M. T. T., Ginsberg, M. D., Harik, S. I., Busto, R., and Kietrich, W. D. (1987). Role of dopamine in ischemic striatal injury: Metabolic evidence.Neurology 37: 1712–1719.

    Google Scholar 

  • Hirsch, J. A., and Gibson, G. E. (1984). Selective alteration of neurotransmitter release by low oxygenin vitro.Neurochem. Res. 9: 1039–1049.

    Google Scholar 

  • Lee, E. H., and Geyer, M. A. (1984). Dopamine autoreceptor mediation of the effects of apomorphine on serotonin neurons.Pharm. Biochem. Behav. 21: 301–311.

    Google Scholar 

  • Lillie, R. D. (ed.) (1977).H. J. Conn's Biological Stains, 9th ed., Williams and Wilkens, Baltimore, Md., p. 412.

    Google Scholar 

  • Miwa, S., Fujiwara, M., Inoue, M., and Fujiwara, M. (1986). Effects of hypoxia on the activities of noradrenergic and dopaminergic neurons in the rat brain.J. Neurochem. 47: 63–69.

    Google Scholar 

  • Mrsulja, B. B., Mrsulja, B. J., Spatz, M., and Klatzo, I. (1976). Catecholamines in brain ischemia-effects of alpha-methyl-p-tyrosine and pargyline.Brain Res. 104: 373–378.

    Google Scholar 

  • Nunn, J. F., and Payne, J. P. (1962). Hypoxemia after general anesthesia.Lancet 2: 631.

    Google Scholar 

  • Pastuszko, A., Wilson, D. F., and Erecinska, M. (1982). Neurotransmitter metabolism in rat brain synaptosomes: Effect of anoxia and pH.J. Neurochem. 38: 657–1667.

    Google Scholar 

  • Pelligrino, L. J., and Cushman, A. J. (1967).A Sterotaxic Atlas of the Rat Brain, Appleton-Century-Crofts, New York, p. 19.

    Google Scholar 

  • Peterson, C., and Gibson, G. E. (1982). 3,4-Diaminopyridine alters acetylcholine metabolism and behavior during hypoxia.J. Pharmacol. Exp. Ther. 22: 576–582.

    Google Scholar 

  • Phebus, L. A., Perry, K. W., Clemens, J. A., and Fuller, R. W. (1986). Brain anoxia releases striatal dopamine in rats.Life Sci. 38: 2447–2453.

    Google Scholar 

  • Prioux-Guyonneau, M., Cretet, E., Jacquot, C., Rapin, J. R., and Cohen, Y. (1979). The effect of various simulated altitudes on the turnover of norepinephrine and dopamine in the central nervous system of rats.Pflugers Arch. 380: 127–132.

    Google Scholar 

  • Rice, M. E., Oke, A. F., Bradberry, C. W., and Adams, R. N. (1985). Simultaneous voltammetric and chemical monitoring of dopamine releasein situ.Brain Res. 340: 151–155.

    Google Scholar 

  • Sandler, J. (1955). A test of the significance of the difference between the means of correlated measures based on a simplification of Student's t.Br. J Psychol. 46: 225–226.

    Google Scholar 

  • Shimada, M., Kihara, T., Kurimoto, K., and Watanabe, M. (1974). Incorporation of14C from [U-14C]-sglucose into free amino acids under cyanide intoxication.J. Neurochem. 23: 379–384.

    Google Scholar 

  • Silverstein, F., and Johnston, M. V. (1984). Effects of hypoxia-ischemia on monoamine metabolism in the immature brain.Ann. Neurol. 15: 342–347.

    Google Scholar 

  • Steel, R. G. D., and Torrie, J. H. (1960).Principles and Procedures of Statistics, McGraw-Hill, New York, pp. 99–107.

    Google Scholar 

  • Trouvin, J. H., Prioux-Guyonneau, M., Cohen, Y., and Jacquot, C. (1986). Rat brain monoamine metabolism and hypobaric hypoxia: A new approach.Gen. Pharm. 17: 69–73.

    Google Scholar 

  • Vulto, A. G., Sharp, T., and Ungerstedt, U. (1985). Rapid post-mortal increase in extracellular concentration of dopamine in the rat as assessed by intra-cranial dialysis.Soc. Neuroci. Abstr. 11: 1207.

    Google Scholar 

  • Weinberger, J., Nieves-Rosa, J., and Cohen, G. (1985). Nerve terminal damage in cerebral ischemia: Protective effect of alpha-methyl-para-tyrosine.Stroke 16: 864–870.

    Google Scholar 

  • Wurtman, R. J., and Zervas, N. T. (1974). Monoamine neurotransmitters and the pathophysiology of stroke and central nervous system trauma.J. Neurosurg. 40: 34–36.

    Google Scholar 

  • Yoshino, Y., and Elliot, K. A. C. (1970). Incorporation of carbon atoms from glucose into free amino acids in brain under normal and altered conditions.Can. J. Biochem. 48: 228–235.

    Google Scholar 

  • Zervas, N. T., Hori, H., Negora, M., Wurtman, R. J., Larin, F., and Lavyne, M. H. (1974). Reduction in brain dopamine following experimental cerebral ischaemia.Nature 247: 283–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broderick, P.A., Gibson, G.E. Dopamine and serotonin in rat striatum duringin vivo hypoxic-hypoxia. Metabolic Brain Disease 4, 143–153 (1989). https://doi.org/10.1007/BF00999391

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999391

Key words

Navigation