Skip to main content
Log in

“Escape” of aldosterone production in patients with left ventricular dysfunction treated with an angiotensin converting enzyme inhibitor: Implications for therapy

  • Ace Inhibitors
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

Despite the findings in randomized trials of a significant effect of angiotensin-converting enzyme (ACE) inhibitors in reducing morbidity and mortality of patients with symptomatic left ventricular dysfunction, the morbidity and mortality of these patients remains relatively high. One potential strategy to further improve morbidity and mortality in these patients is blockade of aldosterone. Many clinicians have assumed that ACE inhibitors would block both angiotensin II and aldosterone. However, there are data to suggest that aldosterone production may “escape” despite the use of an ACE inhibitor. An escape of aldosterone production has several important consequences, including: sodium retention, potassium and magnesium loss, myocardial collagen production, ventricular hypertrophy, myocardial norepinephrine release, endothelial dysfunction, and a decrease in serum high density lipoprotein cholesterol. Due to the potential importance of these mechanisms, the finding that there is a significant correlation between aldosterone production and mortality in patients with heart failure, as well as evidence that an aldosterone antagonist, spironolactone, when administered to patients with heart failure treated with conventional therapy including an ACE inhibitor results in increased diuresis and symptomatic improvement, an international prospective multicenter study has been organized, the Randomized Aldactone Evaluation Study (RALES Pilot Study), to evaluate the safety of blocking the effects of aldosterone in patients with heart failure treated with an ACE inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure.N Engl J Med 1987;316:1429–1435.

    Google Scholar 

  2. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure.N Engl J Med 1991;295:293–302.

    Google Scholar 

  3. Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure.N Engl J Med 1991;325:303–310.

    Google Scholar 

  4. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction.N Engl J Med 1992;327:669–677.

    Google Scholar 

  5. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure.Lancet 1993;342:821–828.

    Google Scholar 

  6. Yusuf S, Pepine CJ, Garces C, et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions.Lancet 1992;340:1173–1178.

    Google Scholar 

  7. Captopril Multicenter Research Group. A placebo-controlled trial of captopril in refractory chronic congestive heart failure.J Am Coll Cardiol 1983;2:755–763.

    Google Scholar 

  8. The Captopril-Digoxin Multicenter Research Group. Comparative effects of therapy with captopril and digoxin in patients with mild-to-moderate heart failure.JAMA 1988;259:539–544.

    Google Scholar 

  9. Garg R, Packer M, Pitt B, Yusuf S. Heart failure in the 1990s: Evolution of a major public health problem in cardiovascular medicine.J Am Coll Cardiol 1993;22:3A-5A.

    Google Scholar 

  10. Staessen J, Lijnen P, Fagard R, et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression.J Endocrinol 1981;91:457–465.

    Google Scholar 

  11. Mareyev V, Skvortsov A, Masenko V, Belenkov Y. Escape of ACE inhibitor effects on aldosterone during long-term treatment of congestive heart failure. Abstract to be presented at the International Meeting on Heart Failure, Amsterdam, April 1995.

  12. Aldigier JC, Huang H, Dalmay F, et al. Angiotensin-converting enzyme inhibition does not suppress plasma angiotensin II increase during exercise in humans.J Cardiovasc Pharmacol 1993;21:289–295.

    Google Scholar 

  13. Borghi C, Boschi S, Ambrosioni E, Melandri G, Branzi A, Magnani B. Evidence of a partial escape of renin-angiotensin-aldosterone blockade in patients with acute myocardial infarction treated with ACE inhibitors.J Clin Pharmacol 1993;33:40–45.

    Google Scholar 

  14. Pouleur H, Konstam MA, Benedict CR, et al. Progression of left ventricular dysfunction during enalapril therapy: Relationship with neuro-hormonal reactivation.Circulation 1993;88:I-293.

    Google Scholar 

  15. Husain A. The chymase-angiotensin system in humans.J Hypertens 1993;11:1155–1159.

    Google Scholar 

  16. Dzau VJ. Vascular renin angiotensin pathways: A new therapeutic target.J Cardiovasc Pharmacol 1992;10(Suppl 7):S13-S26.

    Google Scholar 

  17. Weber KT, Villarreal D, Griffing GT.Heart Failure: Pathophysiology, Aldosterone and Anti-aldosterone therapy. GD Searle & Co., 1993.

  18. Robertson JIS, Nicholls MG.The Renin-Angiotensin System. London: Gower Medical, 1993.

    Google Scholar 

  19. Davis JO, Hartroft PM, Titus EO, et al. The role of the renin-angiotensin system in the control of aldosterone secretion.J Clin Invest 1962;41:378–389.

    Google Scholar 

  20. Muller J. Spironolactone in the management of congestive cardiac failure: A review.Clin Ther 1986;9:63–76.

    Google Scholar 

  21. Naftilan AJ, Pratt RE, Eldridge CS, et al. Angiotensin II induces c-fos expression in smooth muscle cell via transcriptional control.Hypertension 1989;13:706–711.

    Google Scholar 

  22. Dohi Y, Hahn AWA, Boulanger CM, et al. Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries.Hypertension 1992;19:131–137.

    Google Scholar 

  23. Rydzewski B, Zelezna B, Tang W, et al. Angiotensin II stimulation of plasminogen activator inhibitor-I gene expression in astroglial cells from the brain.Endocrinology 1992;130:1255–1262.

    Google Scholar 

  24. Keidar S, Brook JG, Aviram M. Angiotensin II enhances lipid peroxidation of low-density lipoprotein.News Physiol Sci 1993;8:245–248.

    Google Scholar 

  25. Hall JE, Brands MW. Intrarenal and circulating angiotensin II and renal function. In: Robertson JIS, Nicholls MG, eds.The Renin-Angiotensin System. Gower Medical, London, 1993.

    Google Scholar 

  26. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: Fibrosis and renin-angiotensin-aldosterone system.Circulation 1991;83:1849–1865.

    Google Scholar 

  27. Weber KT, Villareal D. Aldosterone and antialdosterone therapy in congestive heart failure.Am J Cardiol 1993;71:3A-11A.

    Google Scholar 

  28. Wester PO, Dyckner T. Intracellular electrolytes in cardiac failure.Acta Med Scand 1986;707:33–36.

    Google Scholar 

  29. Eisenberg MJ. Magnesium deficiency and sudden death.Am Heart J 1992;124:544–549.

    Google Scholar 

  30. Whang R, Flink EB, Dyckner T, Wester PO, Aikawa JK, Ryan MP. Magnesium depletion as a cause of refractory potassium repletion.Arch Intern Med 1985;145:1686–1689.

    Google Scholar 

  31. Barr CS, Hanson J, Kennedy N, Lang CC, Struthers AD. The effect of a mineralocorticoid antagonist on myocardial mIBG uptake in congestive heart failure.Circulation 1993;88:I-256.

    Google Scholar 

  32. Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: Effect of encainide and flecainide on mortality in randomized trial of arrhythmia suppression after myocardial infarction.N Engl J Med 1989;321:406–412.

    Google Scholar 

  33. Goldman S, Johnson G, Cohn JN, Cintron G, Smith R, Francis G, for the V-HeFT VA Cooperative Studies Group. Mechanism of death in heart failure. The vasodilator-heart failure trials.Circulation 1993;87:VI24–VI-31.

    Google Scholar 

  34. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction.N Engl J Med 1992;327:685–691.

    Google Scholar 

  35. Texter M, Lees RS, Pitt B, et al. The Quinapril Ischemic Event Trial (QUIET) design and methods: Evaluation of chronic ACE inhibitor therapy after coronary artery intervention.Cardiovasc Drugs Ther 1993;7:273–282.

    Google Scholar 

  36. Bauwens FR, Duprez DA, DeBuyzere ML, et al. Influence of the arterial blood pressure and nonhemodynamic factors on left ventricular hypertrophy in moderate essential hypertension.Am J Cardiol 1991;68:925–929.

    Google Scholar 

  37. Karam R, Healy BP, Wicker P. Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy.Circulation 1990;81:238–246.

    Google Scholar 

  38. Yuen JL, Wu J, Nanna M, et al. Coronary vascular reserve is substantially reduced in dilated cardiomyopathy independently from the presence or absence of coronary artery disease.J Am Coll Cardiol 1993;21:364A.

    Google Scholar 

  39. Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension.Hypertension 1993;21:929–933.

    Google Scholar 

  40. Harrison DG, Freiman PC, Mitchell GG, et al. Alterations of vascular reactivity in atherosclerosis.Circ Res 1987;61(Suppl II):74–80.

    Google Scholar 

  41. Treasure CB, Vita JV, Cox DA, et al. Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy.Circulation 1990;3:772–779.

    Google Scholar 

  42. Goetz KL, Wang BC, Madwed JF, Zhu IL, Leadley RJ. Cardiovascular, renal, and endocrine responses to intravenous endothelin in conscious dogs.Am J Physiol 1988;255:R1064-R1068.

    Google Scholar 

  43. Hirata Y, Takagi, Fukuda Y, Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells.Atherosclerosis 1989;78:225–228.

    Google Scholar 

  44. Lind L, Lithell H, Wide L, et al. Metabolic cardiovascular risk factors and the renin-aldosterone system in essential hypertension.J Hum Hypertens 1992;6:27–29.

    Google Scholar 

  45. Wehling M, Christ M, Theisen K. Membrane receptors for aldosterone: A novel pathway for mineralo-corticoid action.Endocrinol Metab 1992;26:E974-E979.

    Google Scholar 

  46. Wehling M, Armanini D, Strasser T, et al. Effect of aldosterone on sodium and potassium concentrations in human mononuclear leukocytes.Endocrinol Metab 1987;252:E505-E508.

    Google Scholar 

  47. Turlapaty PDMV, Altuna BM. Magnesium deficiency produces spasms of coronary arteries: Relationship to etiology of sudden death ischemic heart disease.Science 1989;208:198–200.

    Google Scholar 

  48. Miyagi H, Yasue H, Okumura K, et al. Effect of magnesium on anginal attack induced by hyperventilation in patients with variant angina.Circulation 1989;79:597–602.

    Google Scholar 

  49. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF. Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin.Mol Cell Biochem 1992;110:169–173.

    Google Scholar 

  50. Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide.Science 1992;257:387–389.

    Google Scholar 

  51. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure.Circulation 1990;82:1724–1729.

    Google Scholar 

  52. Gottlieb SS. Importance of magnesium in congestive heart failure.Am J Cardiol 1989;63:39G-42G.

    Google Scholar 

  53. Ralston MA, Murnane MR, Kelley RE, Altschuld RA, Unverferth DV, Leier CV. Magnesium content of serum, circulating mononuclear cells, skeletal muscle, and myocardium in congestive heart failure.Circulation 1989;80:573–580.

    Google Scholar 

  54. Dorup I, Skajaa K, Clausen T, Kjeldsen K. Reduced concentrations of potassium, magnesium and sodium-potassium pumps in human skeletal muscle during treatment with diuretic.Br Med J 1988;296:455–458.

    Google Scholar 

  55. Bashir Y, Sneddon JF, Staunton HA, et al. Effects of long-term oral magnesium chloride replacement in congestive heart failure secondary to coronary artery disease.Am J Cardiol 1993;72:1156–1162.

    Google Scholar 

  56. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L, for the CONSENSUS Trial Study Group. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality.Circulation 1990;82:1730–1736.

    Google Scholar 

  57. van Vliet AA, Donker AJM, Nauta JJP, et al. Spironolactone in congestive heart failure refractory to high-dose loop diuretic and low-dose angiotensin converting enzyme inhibitor.Am J Cardiol 1993;71:21A-28A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitt, B. “Escape” of aldosterone production in patients with left ventricular dysfunction treated with an angiotensin converting enzyme inhibitor: Implications for therapy. Cardiovasc Drug Ther 9, 145–149 (1995). https://doi.org/10.1007/BF00877755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877755

Key Words

Navigation