Skip to main content
Log in

Changes in pulmonary surfactant during bacterial pneumonia

  • Mini-review
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In pneumonia, bacteria induce changes in pulmonary surfactant. These changes are mediated by bacteria directly on secreted surfactant or indirectly through pulmonary type II epithelial cells. The bacterial component most likely responsible is endotoxin since gram-negative bacteria more often induce these changes than gram-positive bacteria. Also, endotoxin and gram-negative bacteria induce similar changes in surfactant. The interaction of bacteria or endotoxin with secreted surfactant results in changes in the physical (i.e. density and surface tension) properties of surfactant. In addition, gram-negative bacteria or endotoxin can injure type II epithelial cells causing them to produce abnormal quantities of surfactant, abnormal concentrations of phospholipids in surfactant, and abnormal compositions (i.e. type and saturation of fatty acids) of PC. The L/S ratio, the concentration of PG, and the amount of palmitic acid in PC are all significantly lower. The changes in surfactant have a deleterious effect on lung function characterized by significant decreases in total lung capacity, static compliance, diffusing capacity, and arterial PO2 and a significant increase in mean pulmonary arterial pressure. Also decreased concentrations of surfactant or an altered surfactant composition can result in the anatomic changes commonly seen in pneumonia such as pulmonary edema, hemorrhage, and atelectasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAL:

Bronchoalveolar lavage

LPS:

lipopolysaccharide

PC:

phosphatidylcholine

PG:

phosphatidylglycerol

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

LPC:

lysophosphatidylcholine

SPH:

sphingomyelin

DPPC:

dipalmitoylphosphatidylcholine

L/S:

lecithin/sphingomyelin

References

  • Albert RK, Lakshminarayan S, Hildebrandt J, Kirk W & Butler J (1979) Increased surface tension favors pulmonary edema formation in anesthetized dogs' lungs. J. Clin. Invest. 63: 1015–1018

    Google Scholar 

  • Aracil FM, Bosch MA & Municio AM (1985) Influence of E. coli lipopolysaccharide binding to rat alveolar Type II cells on their functional properties. Molec. Cellular Biochem. 68: 59–66

    Google Scholar 

  • Barrow RE & Hills BA (1979) A critical assessment of the Wilnelmy method in studying lung surfactants. J. Physiol. 295: 217–227

    Google Scholar 

  • Baughman RP, Stein E, MacGee J, Rashkin M & Sahebjami H (1984) Changes in fatty acids in phospholipids of the bronchoalveolar fluid in bacterial pneumonia and in adult respiratory distress syndrome. Clin. Chem. 30: 521–523

    Google Scholar 

  • Bosch MA, Risco C & Martin-Municio A (1990) Effect of Escherichia coli lipopolysaccharide on phosphatidylcholine biosynthesis by rat lung and alveolar type II cells. Mol. Cel. Biochem. 93: 167–172

    Google Scholar 

  • Brogden KA, Cutlip RC & Lehmkuhl HD (1986a) Complexing of bacterial lipopolysaccharide with lung surfactant. Infect. Immun. 52: 644–649

    Google Scholar 

  • Brogden KA & Hills BA (1986) Surface tension properties of pulmonary surfactant and lipopolysaccharide mixtures. Proceedings XIV International Congress of Microbiology, Manchester, England. (p 64)

  • Brogden KA, Rimler RB, Cutlip RC, Lehmkuhl HD (1986b) Incubation of Pasteurella haemolytica and Pasteurella multocida lipopolysaccharide with sheep lung surfactant. Am. J. Vet. Res. 47: 727–729

    Google Scholar 

  • Brogden KA, Adlam C, Lehmkuhl HD, Cutlip RC, Knights JM & Engen RL (1989) Effect of Pasteurella haemolytica (A1) capsular polysaccharide on sheep lung in vivo and on pulmonary surfactant in vitro. Am. J. Vet. Res. 50: 555–5591

    Google Scholar 

  • Clements JA & Tierney DF (1965) Alveolar instability associated with altered surface tension. In: Fenn WO & Rahn H (Ed) Respiration (pp 1565–1583) American Physiological Society, Washington, DC

    Google Scholar 

  • Coalson JJ, King RJ, Winter VT, Prihoda TJ, Anzueto AR, Peters JI & Johanson WGJr (1989) O2− and pneumonia-induced lung injury I. Pathological and morphometric studies. J. Appl. Physiol. 67: 346–356

    Google Scholar 

  • Cotton DB & Hills BA (1984) Pulmonary surfactant: Hydorphobic nature of the mucosal surface of the human amnion. J. Physiol. 349: 411–418

    Google Scholar 

  • DeLucca AJII, Brogden KA & Engen R (1988) Enterobacter agglomerans lipopolysaccharide-induced changes in pulmonary surfactant as a factor in the pathogenesis of Byssinosis. J. Clin. Microbiol. 26: 778–780

    Google Scholar 

  • Dobbs LG (1989) Pulmonary surfactant. Ann. Rev. Med. 40: 431–436

    Google Scholar 

  • Groniowski JA (1983) Fine structural basis of pulmonary surfactant. Inter. Rev. Exper. Path. 25: 183–238

    Google Scholar 

  • Hallman M, Spragg R, Harrell JH, Moser KM & Gluck L (1982) Evidence of lung surfactant abnormality in respiratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity, and plasma myoinositol. J. Clin. Invest. 70: 673–683

    Google Scholar 

  • Hallman M, Arjomaa P, Tahvanainen J, Lachmann B & Spragg R (1985) Endobronchial surface active phospholipids in various pulmonary diseases. Eur. J. Resp. Dis. Suppl. 142: 37–47

    Google Scholar 

  • Hills BA (1988) The Biology of Surfactant. Cambridge University Press, Cambridge

    Google Scholar 

  • Holm BA, Notter RH & Finkelstein JN (1985) Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem. Phys. Lipids 38: 287–298

    Google Scholar 

  • Jobe A, Ikegami M, Sarton-Miller I & Barajas L (1980) Surfactant metabolism of newborn lamb lungs studied in vivo. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 1091–1098

    Google Scholar 

  • Kalina M & Socher R (1990) Internalization of pulmonary surfactant into lamellar bodies of cultured rat pulmonary type II cells. J. Histochem. Cytochem. 38: 483–492

    Google Scholar 

  • King RJ, Coalson JJ, Seidenfeld JJ, Anzueto AR, Smith DB & Peters JI (1989) O2-and pneumonia-induced lung injury. II. Properties of pulmonary surfactant. J. Appl. Physiol. 67: 357–365

    Google Scholar 

  • Lopez A, Albassam M, Yong S, Sharma A, Lillie LE & Prior MG (1987) Profiles of Type-II pneumocytes in rats inoculated intratracheally with bacterial lipopolysaccharide. Am. J. Vet. Res. 10: 1534–1539

    Google Scholar 

  • McArthur HAI & Ceri H (1983) Interaction of a rat lung lectin with the polysaccharides of Pseudomonas aeruginosa. Infect. Immun. 42: 574–578

    Google Scholar 

  • Magoon MW, Wright JR, Baritussio A, Williams MC, Goerke J, Benson BJ, Hamilton RL & Clements JA (1983) Subfractionation of lung surfactant. Implications for metabolism and surface activity. Biochim. Biophys. Acta 750: 18–31

    Google Scholar 

  • Possmayer F, Yu SH, Weber JM & Harding PGR (1984) Pulmonary surfactant. Can. J. Biochem. Cell Biol. 62: 1121–1133

    Google Scholar 

  • Possmayer F (1988) A proposed nomenclature for pulmonary surfactant-associated proteins. Am. Rev. Respir. Dis. 138: 990–998

    Google Scholar 

  • Reynolds HY (1983) Lung Inflammation: Rode of endogenous chemotactic factos in attracting polymorphonuclear granulocytes. Am. Rev. Respir. Dis. 127: S16-S25

    Google Scholar 

  • Rooney SA (1985) The surfactant system and lung phospholipid biochemistry. Am. Rev. Respir. Dis. 131: 439–460

    Google Scholar 

  • Rooney SA (1984) Lung surfactant. Environ. Health Perspectives 55: 205–226

    Google Scholar 

  • Rose M & Lindberg DAB (1968) Effect of pulmonary pathogens on surfactant. Diseases of the Chest 53: 541–544

    Google Scholar 

  • Sachse K (1989) Changes in the relative concentrations of surfactant phospholipids in young pigs with experimental pneumonia. J. Vet. Med. 36: 385–390

    Google Scholar 

  • Shelley SA, Paciga JE & Balis JU (1984) Lung surfactant phospholipids in different animal species. Lipids 19: 857–862

    Google Scholar 

  • Shimizu CSN & Mahour GH (1976) Effect of endotoxins on rabbit alveolar phospholipids. J. Surgical Res. 20: 25–32

    Google Scholar 

  • Sutnick AI & Soloff LA (1964) Atelectasis with pneumonia. A pathophysiologic study. Ann. Internal Med. 60: 39–46

    Google Scholar 

  • Tahvanainen J & Hallman M (1987) Surfactant abnormality after endotoxin-induced lung injury in guinea-pigs. Eur. J. Respir. Dis. 71: 250–258

    Google Scholar 

  • VanGolde LMG, Batenburg JJ & Robertson B (1988) The pulmonary surfactant system: Biochemical aspects and functional significance. Physiol. Rev. 68: 374–455

    Google Scholar 

  • VonWichert PV & Wilke A (1976) Alveolar stability and phospholipid content in normal pig lungs and in pig lungs with mycoplasma pneumonia. Scand. J. Resp. Dis. 57: 25–30

    Google Scholar 

  • Wright JR & Clements JA (1987) Metabolism and turnover of lung surfactant. Am. Rev. Respir. Dis. 135: 426–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogden, K.A. Changes in pulmonary surfactant during bacterial pneumonia. Antonie van Leeuwenhoek 59, 215–223 (1991). https://doi.org/10.1007/BF00583673

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583673

Key words

Navigation