Skip to main content
Log in

Physical properties of the DNA of bacteriophage SP50

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The following properties of the DNA of B. subtilis phage SP50 were established: Molecular weight (in Daltons) 102×106 (sedimentation velocity) 97×106 (viscosity) 97×106 (contour lengths of electron micrographs) Base Composition (in % GC) 41.7 (chemical analysis) 44 (melting point) 44 (buoyant density) No unusual bases were observed. The complementary strands of the DNA can be separated. The phage DNA has genuine single strand breaks. The number and distribution of such breaks appears to be determined by the host on which phages were grown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, J., and C. A. Thomas jr.: The anatomy of the T5 bacteriophage DNA molecule. J. molec. Biol. 18, 262–291 (1966).

    Google Scholar 

  • Aten, B. T. J. A. Cohen: Sedimentation-viscosity studies of high molecular weight DNA. J. molec. Biol. 12, 537–548 (1965).

    Google Scholar 

  • Baldwin, R. L., and E. M. Shooter: The alkaline transition of BU-containing DNA and its bearing on the replication of DNA. J. molec. Biol. 7, 511–526 (1963).

    Google Scholar 

  • Becker, A., M. Gefter, and J. Hurwitz: Reactions at terminis of DNA. Fed. Proc. 26, 395 (1967).

    Google Scholar 

  • Chen jr., P. S., T. Y. Toribara, and H. Warner: Microdetermination of phosphorus. Analyt. Chem. 28, 1756–1758 (1956).

    Google Scholar 

  • Crothers, D. M., and B. H. Zimm: Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J. molec. Biol. 12, 525–536 (1965).

    Google Scholar 

  • Davison, P. F., and D. Freifelder: Lability of single-stranded deoxyribonucleic acid to hydrodynamic shear. J. molec. Biol. 16, 490–502 (1966).

    Google Scholar 

  • Doerfler, W., and D. S. Hogness: The complementary strands of lambda DNA: Isolation, renaturation, and formation of heteroduplex molecules. Fed. Proc. 24, 226 (1965).

    Google Scholar 

  • Földes, J., and T. A. Trautner: Infectious DNA from a newly isolated B. subtilis phage. Z. Vererbungsl. 95, 57–65 (1964).

    Google Scholar 

  • Freifelder, D.: A novel method for the release of bacteriophage DNA. Biochem. biophys. Res. Commun. 18, 141–144 (1965).

    Google Scholar 

  • —, and P. F. Davison: Physicochemical studies on the reaction between formaldehydes and DNA. Biophys. J. 3, 49–63 (1963).

    Google Scholar 

  • Gellert, M.: Formation of covalent circles of lambda DNA by E. coli extracts. Proc. nat. Acad. Sci. (Wash.) 57, 148–155 (1967).

    Google Scholar 

  • Ifft, J. B., D. H. Voet, and J. Vinograd: The determination of density distributions and density gradients in binary solutions at equilibrium in the ultracentrifuge. J. Phys. Chem. 65, 1138–1150 (1961).

    Google Scholar 

  • Kallen, R. G., M. Simon, and J. Marmur: The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyluracil. J. molec. Biol. 5, 248–250 (1962).

    Google Scholar 

  • Kleinschmidt, A. K.: Protein monolayer methods in electron microscopy of nucleic acid molecules. In: Sidney P. Colowick and Nathan O. Kaplan, Methods in enzymology, vol. 12a, (in press). New York: Academic Press 1967.

    Google Scholar 

  • —, D. Lang, D. Jacherts, and R. K. Zahn: Darstellung und Längenmessungen des gesamten Desoxyribonucleinsäure-Inhaltes von T2-Bakteriophagen. Biochim. biophys. Acta (Amst.) 61, 857–864 (1962).

    Google Scholar 

  • ——, u. R. K. Zahn: Über die intrazelluläre Formation von Bakterien DNS. Z. Naturforsch. 14b, 730–739 (1959).

    Google Scholar 

  • —, and T. A. Trautner: Strand characterization of duplex DNA of SP50 B. subtilis phage. Biophys. J. 6, Abstr. 105 (1966).

    Google Scholar 

  • Lang, D., H. Bujard, B. Wolfe, and D. J. Russel: Electron microscopy of size and shape of viral DNA in solutions of different ionic strengths. J. molec. Biol. 23, 163–181 (1967).

    Google Scholar 

  • —, A. K. Kleinschmidt u. R. K. Zahn: Konfiguration und Längenverteilung von DNA-Molekülen in Lösung. Biochim. biophys. Acta (Amst.) 88, 142–154 (1964).

    Google Scholar 

  • Marmur, J., and S. Cordes: Studies on the complementary strands of bacteriophage DNA. In: Henry J. Vogel, Informational macromolcules, p. 79–87. New York: Academic Press 1963.

    Google Scholar 

  • —, and P. Doty: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. molec. Biol. 5, 109–118 (1962).

    Google Scholar 

  • —, and C. M. Greenspan: Transcription in vivo of DNA from bacteriophage SP8. Science 142, 387–389 (1963).

    Google Scholar 

  • Nomura, M., and K. Matsubara: Inhibition of host nucleic acid and protein synthesis by bacteriophage T4: Its relation to the physical and functional integrity of host chromosome. J. molec. Biol. 5, 535–549 (1962).

    Google Scholar 

  • Olivera, B., and I. R. Lehman: Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 57, 1426–1433 (1967).

    Google Scholar 

  • Richardson, C. C.: Phosphorylation of nucleic acid by an enzyme from bacteriophage T4 infected Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 54, 158–165 (1965).

    Google Scholar 

  • —, C. L. Schildkraut, H. V. Aposhian and A. Kornberg: Enzymatic synthesis of deoxyribonucleic acid. XIV. Further purification and properties of deoxyribonucleic acid polymerase of Escherichia coli. J. biol. Chem. 239, 222–232 (1964).

    Google Scholar 

  • Schildkraut, C. L., J. Marmur, and P. Doty: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962).

    Google Scholar 

  • Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072–1078 (1958).

    Google Scholar 

  • Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965).

    Google Scholar 

  • Thomas, C. A.: The arrangement of information in DNA molecules. J. gen. Physiol. 49, 143–169 (1966).

    Google Scholar 

  • Thomas, C. A., and L. A. McHattie: Circular T2 molecules. Proc. nat. Acad. Sci. (Wash.) 52, 1297 (1964).

    Google Scholar 

  • Vinograd, J., J. Morris, N. Davidson, and W. F. Dove Jr.: The buoyant behavior of viral and bacterial DNA in alkaline CsCl. Proc. nat. Acad. Sci. (Wash.) 49, 12–17 (1963).

    Google Scholar 

  • Weiss, B., and C. C. Richardson: Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. nat. Acad. Sci. (Wash.) 57, 1021–1028 (1967).

    Google Scholar 

  • Zimm, B. H., and D. M. Crothers: Simplified rotating cylinder viscometer for DNA. Proc. nat. Acad. Sci. (Wash.) 48, 905–911 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported in part by a Public Health Service research grant GM 13,666 from the National Institutes of General Medical Sciences, AI 01267 from the National Institutes of Allergy and Infectious Diseases, AM 04763 from the National Institutes of Arthritis and Metabolic Diseases; cancer research funds from the University of California; and a grant from the Hartford Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswal, N., Kleinschmidt, A.K., Spatz, H.C. et al. Physical properties of the DNA of bacteriophage SP50 . Molec. Gen. Genet. 100, 39–55 (1967). https://doi.org/10.1007/BF00425774

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425774

Keywords

Navigation