Skip to main content
Log in

The organization of tissues of the eye by different collagen types

  • Published:
Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie Aims and scope Submit manuscript

Summary

Bovine cornea, sclera, iris, ciliary body, choroid, zonular fibers, lens capsule, lens nucleus, vitreous body, and retina were investigated for collagen content and type.

Cornea, sclera, iris, ciliary body, choroid, lens capsule, and vitreous body contain hydroxyproline, whereas in zonular fibers, lens nucleus, and retina no hydroxyproline was detectable.

Preparative isolation of collagen was achieved by digestion of the different eye tissues with pepsin. The pepsin-solubilized collagen was separated by differential salt precipitation into different collagen types.

The polyacrylamide gel electrophoresis of the pepsin-solubilized collagens revealed type I collagen in cornea, sclera, iris, ciliary body, and choroid. As well as type I collagen, type III collagen was isolated from cornea, sclera, and uveal tissues. The identification of types I and III collagen was supported by the CNBr-derived peptides of these collagens. Lens capsule collagen consisted mainly of type IV collagen.

Zonular fibers contained no hydroxyproline but when examined by polyacrylamide gel electrophoresis, a band migrating in the α-position of collagen was observed. Polyacrylamide gel electrophoresis of both the pepsinsolubilized component and the CNBr-derived peptides of vitreous body protein showed no relation to any of the four common collagen types.

Zusammenfassung

Hornhaut, Lederhaut, Regenbogenhaut, Ziliarkörper, Aderhaut, Zonulafasern, Linsenkapsel, Linsenkern, Glaskörper und Netzhaut werden auf ihren Kollagengehalt untersucht. Auch soll festgestellt werden, welche Kollagentypen diese Gewebe aufbauen. Hornhaut, Lederhaut, Regenbogenhaut, Ziliarkörper, Aderhaut, Linsenkapsel und Glaskörper enthalten Hydroxyprolin. Hingegen ist in Zonulafasern, Linsenkern und Netzhaut kein Hydroxyprolin nachzuweisen. Aus den verschiedenen Augengeweben wurde mit Pepsin Kollagen gelöst, das durch Präzipitation mit NaCl-Lösungen verschiedener Molarität in verschiedene Kollagentypen getrennt werden kann.

Die Polyacrylamidgel-Elektrophorese des pepsin-gelösten Kollagens zeigte Type I Kollagen in Hornhaut, Lederhaut, Regenbogenhaut, Ziliarkörper und Aderhaut. Neben Typ I Kollagen wurde aus Hornhaut, Lederhaut und den Geweben der Uvea Typ III Kollagen isoliert. Typ I und Typ III Kollagen wurden durch die Peptide, die man mit CNBr-Spaltung erhalten kann, identifiziert. Die Linsenkapsel besteht hauptsächlich aus Typ IV Kollagen.

Zonulafasern enthalten kein Hydroxyprolin, zeigen aber in der Polyacrylamidgel-Elektrophorese eine Farblinie, die im α-Bereich von Kollagen wandert.

Die Polyacrylamidgel-Elektrophorese des pepsin-gelösten Kollagens des Glaskörpers sowie die CNBr-Spaltprodukte dieses Kollagens zeigten keine Identität mit einem der vier bisher isolierten Kollagentypen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelmann, B., Marquardt, H., Kühn, K.: Investigations on non-collagenous proteins in ratskin. Biochem. Z. 346, 282–296 (1966)

    Google Scholar 

  • Bailey, A.J., Bazin, S., Sims, T.J., LeLous, M., Nicoletis, C., Delaunay, A.: Characterization of the collagen of human hypertrophic and normal scars. Biochim. Biophys. Acta 405, 412–421 (1975)

    Google Scholar 

  • Barnes, M.J., Morton, L.F., Bennett, R.C., Bailey, A.J., Sims, T.J.: Presence of type III collagen in guinea-pig dermal scar. Biochem. J. 157, 263–266 (1976)

    Google Scholar 

  • Bornstein, P., Piez, K.A.: Collagen: Structural studies based on the cleavage of methionyl bonds. Science 148, 1353–1355 (1965)

    Google Scholar 

  • Chung, E., Miller, E.J.: Collagen polymorphism: Characterization of molecules with the chain composition [α1 (III)]3 in human tissues. Science 183, 1200–1201 (1974)

    Google Scholar 

  • Drake, M.P., Davison, P.F., Bump, S., Schmitt, F.O.: Action of proteolytic enzymes on tropocollagen and insoluble collagen. Biochemistry 5, 301–312 (1966)

    Google Scholar 

  • Freeman, I.L., Steven, F.S., Jackson, D.S.: Isolation and amino acid composition of bovine corneal polymeric collagens. Biochim. Biophys. Acta 154, 252–254 (1968)

    Google Scholar 

  • Fujii, T., Kühn, K.: Isolation and characterization of pepsin-treated type III collagen from calf skin. Hoppe-Seyler's Z. Physiol. Chem. 356, 1793–1801 (1975)

    Google Scholar 

  • Furthmayr, H., Timpl, R.: Characterization of collagen peptides by sodium dodecylsulfatepolyacrylamide electrophoresis. Anal. Biochem. 41, 510–516 (1971)

    Google Scholar 

  • Gärtner, J.: The fine structure of the zonular fiber of the rat. Development and aging changes. Z. Anat.Entwickl.-Gesch. 130, 129–152 (1970)

    Google Scholar 

  • Gloor, B.P.: Zur Entwicklung des Glaskörpers und der Zonula. VI. Autoradiographische Untersuchungen zur Entwicklung der Zonula der Maus mit 3H-markierten Aminosäuren und 3H-Glucose. Albrecht v. Graefes Arch. klin. exp. Ophthal. 189, 105–124 (1974)

    Google Scholar 

  • Gross, J., Matoltsy, G., Cohen, C.: Vitrosin: A member of the collagen class. J. Biophys. Biochem. Cytol. 1, 215–220 (1955)

    Google Scholar 

  • Gross, E., Witkop, B.: Selective cleavage of the methionyl peptide bonds in ribonuclease with cyanogen bromide. J. Amer. Chem. Soc. 83, 1510–1511 (1961)

    Google Scholar 

  • Katzman, R.L., Kang, A.H., Dixit, S.N.: Isolation and characterization of bovine corneal collagen. Biochim. Biophys. Acta 336, 367–369 (1974)

    Google Scholar 

  • Kefalides, N.A., Denduchis, B.: Structural components of epithelial and endothelial basement membranes. Biochemistry 8, 4613–4621 (1969)

    Google Scholar 

  • Krause, A.C., Chan, E.: The chemical constitution of the conjunctiva, choroid and iris. Am. J. Physiol. 103, 270–274 (1933)

    Google Scholar 

  • Matoltsy, A.G.: A study on the structural protein of the vitreous body (vitrosin). J. Gen. Physiol. 36, 29–37 (1952)

    Google Scholar 

  • Miller, E.J.: Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin. Biochemistry 11, 4903–4909 (1972)

    Google Scholar 

  • Olsen, B.R.: Electron microscope studies on collagen. IV. Structure of vitrosin fibrils and interaction properties of vitrosin molecules. J. Ultrastruct. Res. 13, 172–191 (1965)

    Google Scholar 

  • Polatnick, J., LaTessa, A.J., Katzin, H.M.: Comparisons of collagen preparations from beef cornea and sclera. Biochim. Biophys. Acta 26, 365–369 (1957)

    Google Scholar 

  • Propst, A., Hofmann, H.: Elektronenmikroskopische Untersuchungen der Zonulafasern mit besonderer Berücksichtigung der TrypsineinWirkung. Albrecht v. Graefes Arch. klin. exp. Ophthal. 162, 269–278 (1960)

    Google Scholar 

  • Raviola, G.: The fine structure of the ciliary zonule and ciliary epithelium. With special regard to the organization and insertion of the zonular fibrils. Invest. Ophthalmol. 10, 851–869 (1971)

    Google Scholar 

  • Rubin, A.L., Pfahl, D., Speakman, P.T., Davison, P.F., Schmitt, F.O.: Tropocollagen: Significance of protease induced alterations. Science 139, 37–39 (1963)

    Google Scholar 

  • Schmut, O., Reich, M.E., Zirm, M.: Der Nachweis verschiedener Kollagentypen im Rinderauge. Albrecht v. Graefes Arch. klin. exp. Ophthal. 196, 71–77 (1975)

    Google Scholar 

  • Schmut, O.: The identification of type III collagen in calf and bovine cornea and sclera. Exp. Eye. Res. 25, 505–509 (1977)

    Google Scholar 

  • Smith, G.N., Jr., Linsenmayer, T.F., Newsome, D.A.: Synthesis of type II collagen in vitro by embryonic chick neural retina tissue. Proc. Natl. Acad. Sci. U.S.A. 73, 4420–4423 (1976)

    Google Scholar 

  • Smits, G.: Quantitative interrelationships of the chief components of some connective tissues during foetal and post-natal development in cattle. Biochim. Biophys. Acta 25, 542–548 (1957)

    Google Scholar 

  • Stegemann, H.: Mikrobestimmung von Hydroxyprolin mit Chloramin-T and p-Dimethylaminobenzal-dehyd. Hoppe-Seyler's Z. Physiol. Chem. 311, 41–45 (1958)

    Google Scholar 

  • Swann, D.A., Constable, I.J., Harper, E.: Vitreous structure. III. Composition of bovine vitreous collagen. Invest. Ophthalmol. 11, 735–738 (1972)

    Google Scholar 

  • Swann, D.A., Constable, I.J., Caulfield, J.B.: Vitreous structure. IV. Chemical composition of the insoluble residual protein fraction from the rabbit vitreous. Invest. Ophthalmol. 14, 613–616 (1975)

    Google Scholar 

  • Swann, D.A., Caulfield, J.B., Broadhurst, J.B.: The altered fibrous form of vitreous collagen following solubilization with pepsin. Biochim. Biophys. Acta 427, 365–370 (1976)

    Google Scholar 

  • Trelstad, R.L., Catanese, V.M., Rubin, D.F.: Collagen fractionation: Separation of native types I, II and III by differential precipitation. Anal. Biochem. 71, 114–118 (1976)

    Google Scholar 

  • Uitto, J., Prockop, D.J.: Molecular defects in collagen and the definition of collagen disease. Mol. Pathol. 670–688 (1975)

  • Wollensak, J.: Zonula Zinnii. Histologische und chemische Untersuchungen, insbesondere über Zonolysis enzymatica und Syndroma Marfan. Fortschr. Augenheilk. 16, 240–335 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmut, O. The organization of tissues of the eye by different collagen types. Albrecht von Graefes Arch. Klin. Ophthalmol. 207, 189–199 (1978). https://doi.org/10.1007/BF00411053

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411053

Keywords

Navigation