Skip to main content

Advertisement

Log in

Three-dimensional biomechanical properties of the human cervical spine in vitro

I. Analysis of normal motion

  • Original Articles
  • Published:
European Spine Journal Aims and scope Submit manuscript

Résumé

L'objectif de notre étude est de déterminer le comportement mécanique du rachis cervical humain soumis á des charges physiologiques statiques. Les déplacements tridimensionnels dus à trois moments de couple purs (flexion-extension, inflexion latérale gauche-droite et torsion axiale gauche-droite), sont mesurés sur 56 unités fonctionnelles rachidiennes intactes (UF) de C2 à C7 prélevées sur 29 sujets. Les courbes effort-déplacement sont tracées pour chaque sollicitation. Nous calculons ensuite la zone neutre (ZN), la mobilité maximale (MM), le rapport de ZN à MM, le rapport du déplacement couplé au déplacement principal (RDC), le moment limite et la rigidité sécante. L'influence de la dégénérescence du disque intervertébral et du niveau d'UF sont aussi étudiées avec une analyse de variance (ANOVA). Nos résultats montrent bien la non linéarité des courbes effort-déplacement et la ZN du rachis cervical dans les trois plants de l'espace. Nous trouvons des différences significatives de rigidité entre trois sollicitations appliquées. Lorsque nous sollicitons en inflexion latérale nous observons des différences significatives de rigidité d'un niveau vertébral à l'autre. Mais la différence de rigidité concernant différents états de dégénérescence de disque n'est significative qu'en inclinaison latérale droite. Le RDC sous inflexion latérale et torsion axiale est significativement différent entre différents niveaux d'UF. L'influence du cycle d'effort et la réponse mécanique de C1-C2 en déplacement principal sont aussi présentées.

Summary

Our aim was to determine the biomechanical properties of the normal human cervical spine under physiological static loads. The three-dimensional displacements under three pure moments: flexion-extension, left-right lateral bending and left-right axial torsion — were measured in 56 intact functional spinal units (FSUs) taken from between C2 and C7 in 29 human cadavers. For each mode of loading, load-displacement curves were plotted. Then we calculated each neutral zone, range of motion, neutral zone ratio, ratio of coupled motion, limit moment and secant stiffness. The effects of intervertebral disc degeneration and the disc level were also taken into account by the analysis of variance. Our results adequately demonstrated both the non-linearity of load-displacement curves and the neutral zone of the cervical spine in three-dimensional space. At the same time, we found statistically that the stiffness in the three planes are significantly different, as are the stiffnesses in lateral bending of successive different FSUs. However, significant differences of stiffness in different states of disc degeneration were only found in right lateral bending. There were significant differences between levels in ratio of coupled motion under both lateral bending and axial torsion. The loading cycle conditions and the biomechanical responses of principal motion of C1-2 are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ball J, Meijers KAE (1964) On cervical mobility. Ann Rheum Dis 23:429–438

    Google Scholar 

  2. Coffee MS, Edwards WT, Hayes WC, White III AA (1988) Biomechanical properties and strength of the human cervical spine. Orthop Trans 12:476

    Google Scholar 

  3. Dvorak J, Hayer J, Zehnder R (1987) CT-functional diagnostics of the rotatory instability of the upper cervical spine. 2. An evaluation on healthy adults and patients with suspected instability. Spine 12:726–731

    Google Scholar 

  4. Dvorak J, Froehlich D, Penning L, Baumgartner H, Panjabi MM (1988) Functional radiographic diagnosis of the cervical spine: flexion/extension. Spine 13:748–755

    Google Scholar 

  5. Ehni G (1984) Cervical arthrosis, diseases of cervical motion segments. Year Book, Chicago, pp 44–47

    Google Scholar 

  6. Fielding JW (1957) Cineroentgenography of the normal cervical spine. J Bone Joint Surg [Am] 39:1280–1288

    Google Scholar 

  7. Fielding JW (1985) Cervical spine surgery. Past, present, and future potential. Clin Orthop 200:284–290

    Google Scholar 

  8. Flynn J, Rudert MJ, Olson E, Baratz M, Hanley E (1990) The effects of freezing or freeze-drying on the biomechanical properties of the canine intervertebral disc. Spine 15:567–580

    Google Scholar 

  9. Fung YC, Perrone N, Anliker M (1972) Properties of tendon and skin. Biomechanics. Its foundations and objectives. Prentice-Hall, New Jersey, pp 141–179

    Google Scholar 

  10. Goel VK, Clark CR, McGowan D, Goyal S (1984) An in-vitro study of the kinematics of the normal, injured and stabilized cervical spine. J Biomech 17:363–376

    Google Scholar 

  11. Goel VK, Clark CR, Harris KG, Schulte KR (1988) Kinematics of the cervical spine: effects of multiple total laminectomy and facet wiring. J Orthop Res 6:611–619

    Google Scholar 

  12. Gonnot GP, Mestdagh H, Deschamps G, Dimnet J, Fischer LP (1985) Etude cinématique de la colonne cervicale dans le mouvement de flexion-extension. Bull Assoc Anat (Nancy) 67:433–443

    Google Scholar 

  13. Janevic J, Miller JAA, Schultz AB (1991) Large compressive preloads decrease lumbar motion segment flexibility. J Orthop Res 9:228–236

    Google Scholar 

  14. Johnson RM, Crelin ES, White III AA, Panjabi MM, Southwick (1975) Some new observations on the functional anatomy of the lower cervical spine. Clin Orthop 111:192–200

    Google Scholar 

  15. Keller TS, Holm SH, Hansson TH, Spengler DM (1990) The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15:751–761

    Google Scholar 

  16. Lavaste F, Asselineau A, Diop A, Grandjean JL, Laurain JM, Skalli W, Roy-Camille R (1990) Experimental procedure for mechanical evaluation of dorso-lumbar segments and osteosynthesis devices. Rachis 2:435–446

    Google Scholar 

  17. Lysell E (1969) Motion in the cervical spine. Acta Orthop Scand [Suppl] 123:1–61

    Google Scholar 

  18. McElhaney JH, Doherty BJ, Paver JG, Myers BS, Grey L (1990) Combined bending and axial loading responses of the human cervical spine. Biomed Eng Dept, Duke University, Durham, NC 27706, USA

    Google Scholar 

  19. Mestdagh H (1969) Anatomie fonctionelle du rachis cervical inférieur. Medical thesis, Lille

  20. Mestdagh H (1976) Morphological aspects and biomechanical properties of the vertebroaxial joint (C2-C3). Acta Morphol Neerl-Scand 14:19–30

    Google Scholar 

  21. Mimura M, Moriya H, Watanabe T, Takahashi K, Yamagata M, Tamaki T (1989) Three-dimensional motion analysis of the cervical spine with special reference to the axial rotation. Spine 14:1135–1139

    Google Scholar 

  22. Moroney SP (1984) Mechanical properties and muscle force analyses of the lower cervical spine. Thesis, Chicago

  23. Moroney SP, Schultz AB, Miller JAA, Andersson GBJ (1988) Load-displacement properties of lower cervical spine motion segments. J Biomech 21:769–779

    Google Scholar 

  24. Myklebust JB, Pintar F, Yoganandan N, Cusick JF, Maiman D, Myers T, Sances A (1988) Tensile strength of spinal ligaments. Spine 13:526–531

    Google Scholar 

  25. Nachemson A (1960) Lumbar intradiscal pressure. Acta Orthop Scand [Suppl] 43:9–97

    Google Scholar 

  26. Panjabi M, Goel V (1983) Relationship between chronic instability and disc degeneration. Orthop Trans 7:96

    Google Scholar 

  27. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3:292–300

    Google Scholar 

  28. Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4:152–161

    Google Scholar 

  29. Panjabi MM, Dvorak J, Duranceau J, Yamamoto I, Gerber M, Rauschning W, Bueff HU (1988) Three-dimensional movements of the upper cervical spine. Spine 13:726–730

    Google Scholar 

  30. Penning L (1978) Normal movements of the cervical spine. Am J Roentgenol 130:317–326

    Google Scholar 

  31. Penning L, Wilmink JT (1987) Rotation of the cervical spine. A CT study in normal subjects. Spine 12:732–738

    Google Scholar 

  32. Raynor RB, Moskovich R, Zidel P, Pugh J (1987) Alterations in primary and coupled neck motions after facetectomy. Neurosurgery 21:681–687

    Google Scholar 

  33. Schulte K, Clark CR, Goel VK (1989) Kinematics of the cervical spine following discectomy and stabilization. Spine 14: 1116–1121

    Google Scholar 

  34. Shea M, Edwards, White AA, Hayes WC (1991) Variations of stiffness and strength along the human cervical spine. J Biomech 24:95–107

    Google Scholar 

  35. Tencer AF, Ahmed AM (1981) The role of secondary variables in the measurement of the mechanical properties of the lumbar intervertebral joint. J Biomech Eng 103:103–129

    Google Scholar 

  36. White III AA, Panjabi MM (1990) Clinical biomechanics of the spine. Lippincott, Philadelphia, pp 110, 667

    Google Scholar 

  37. Yamamoto I, Panjabi MM, Cristo T, Oxland T (1989) Threedimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, N., Lavaste, F., Santin, J.J. et al. Three-dimensional biomechanical properties of the human cervical spine in vitro. Eur Spine J 2, 2–11 (1993). https://doi.org/10.1007/BF00301048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00301048

Mots-clés

Key words

Navigation